
Implementing ADM1 for plant-wide benchmark
simulations in Matlab/Simulink

C. Rosen*, D. Vrecko*,**, K.V. Gernaey*,***, M.N. Pons**** and U. Jeppsson*

*Department of Industrial Electrical Engineering and Automation, Lund University, Box 118, SE-22100 Lund,

Sweden (E-mail: christian.rosen@iea.lth.se; ulf.jeppsson@iea.lth.se)

**Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia (E-mail: darko.vrecko@ijs.si)

***Department of Chemical Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark

(E-mail: kvg@kt.dtu.dk)

****Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC-INPL, 1, rue Grandville, F-54001 Nancy

cedex, France (E-mail: Marie-Noëlle.Pons@ensic.inpl-nancy.fr)

Abstract The IWA Anaerobic Digestion Model No.1 (ADM1) was presented in 2002 and is expected to

represent the state-of-the-art model within this field in the future. Due to its complexity the implementation of

the model is not a simple task and several computational aspects need to be considered, in particular if the

ADM1 is to be included in dynamic simulations of plant-wide or even integrated systems. In this paper, the

experiences gained from a Matlab/Simulink implementation of ADM1 into the extended COST/IWA Benchmark

Simulation Model (BSM2) are presented. Aspects related to system stiffness, model interfacing with the ASM

family, mass balances, acid-base equilibrium and algebraic solvers for pH and other troublesome state

variables, numerical solvers and simulation time are discussed. The main conclusion is that if implemented

properly, the ADM1 will also produce high-quality results in dynamic plant-wide simulations including noise,

discrete sub-systems, etc. without imposing any major restrictions due to extensive computational efforts.

Keywords ADM1; anaerobic digestion; benchmark; BSM2; modelling; simulation

Introduction

A wastewater treatment plant should be considered as a unit, where all sub-processes are

linked together and are operated and controlled not only on a local level as individual

processes but by supervisory systems taking into account all the interactions between the

processes. Otherwise, sub-optimisation will be an unavoidable outcome leading to

reduced effluent quality and/or higher operational costs. The development of plant-wide

modelling in the wastewater treatment field is attractive to many researchers as it pro-

vides a holistic view of the process and it allows for a more comprehensive understanding

of the interactions between the various unit processes. Further, the impact of dynamic

changes in the process can be explored as these changes relate to all unit processes that

may be present in a treatment layout. Plant-wide modelling is an important tool for devel-

opment and testing of new control and monitoring schemes for wastewater treatment.

Substantial efforts have been directed towards the development of standardized simu-

lation benchmarks, which allow for unbiased evaluation of different control strategies

under realistic conditions. The development of the Benchmark Simulation Model no 1

(BSM1) (Copp, 2002) has proven successful and is today widely used in the research

community as a benchmark system for the activated sludge process. As a continuation of

that work, a plant-wide simulation benchmark (BSM2) is being developed that includes

the most common unit processes in a treatment plant (Jeppsson et al., 2006). The BSM2

definition consists of the model, an associated control system, a benchmarking procedure

and evaluation criteria. The model includes primary clarifier, a five-tank activated sludge

W
ater

S
cience

&
T

echno
lo

g
y

V
o

l
5

4
N

o
4

p
p

1
1

–
1

9
Q

IW
A

P
ub

lishing
2

0
0

6

11doi: 10.2166/wst.2006.521

system with a (non-reactive) secondary clarifier, a sludge thickener, an anaerobic digester

and a dewatering unit (Figure 1). In contrast to BSM1, whose influent characteristics

are provided as a data file, a model including urban drainage and sewer system effects

(Gernaey et al., 2005) generates the influent wastewater characteristics.

The availability of faster, more powerful computers allows for more complex models to

be simulated but it is clear that a plant-wide model, which includes many unit

processes (e.g. BSM2), requires significant computational power. For steady-state simu-

lation (constant inputs), the computational burden is relatively acceptable but for dynamic

simulations (changing inputs), simulation time becomes extensive when the evaluation

period is long (for BSM2 20 months of dynamic simulations are required for each test).

Moreover, dynamic and especially stochastic inputs in combination with the inherent

structure of the BSM2 further complicate the simulations due to numerical considerations

and restrictions. In this paper, we discuss the implementation of the Anaerobic Digestion

Model no 1 (ADM1) (Batstone et al., 2002) in Matlab/Simulink as an integrated part of the

BSM2. This includes computational aspects encountered in the implementation of the

BSM2 and some solutions in order to improve the simulation speed. The paper also

provides additional comments regarding mass balances for nitrogen and carbon as well as

other experiences gained. The effort to improve the simulation speed of the ADM1 is due to

the need to reduce the simulation time for the BSM2. However, the results presented in this

paper are general and other users of the ADM1 should also benefit from these results.

ADM1 for BSM2

The fact that the Matlab/Simulink implementation discussed in this work aims at an inte-

grated part of the BSM2 puts some requirements on the way the ADM1 is implemented.

The model must be able to handle dynamic inputs, time-discrete and event-driven control

actions as well as stochastic inputs or noise and still be sufficiently efficient and fast to

allow for extensive simulations.

Dynamic inputs

BSM2 aims at developing and evaluating control strategies for wastewater treatment.

The challenge to control a WWTP lies mainly in the changing influent wastewater

Figure 1 Plant layout for the BSM2

C
.R

o
sen

et
al.

12

characteristics. The generation of dynamic input is, thus, an integrated part of the BSM2.

This means that, except in order to obtain initial conditions, BSM2 is always simulated

using dynamic input and, consequently, no plant unit is ever at steady state. According to

the BSM2 protocol, using dynamic influent data, the plant is simulated for 63 days to

reach a pseudo-steady state. This is followed by 182 days of simulation for initialisation

of control and/or monitoring algorithms. The subsequent 364 days of simulation is the

actual evaluation period. In total, this encompasses 609 days of dynamic simulations

(Gernaey et al., 2005) with new data every 15 minutes.

Control actions

The BSM2 is a control benchmark. It should be possible to test and evaluate various

types of controllers (Jeppsson et al., 2006). From a numerical point of view, continuous

controllers yield the least computational effort. However, discrete controllers are more

common and many of the commercially available sensors are also discrete. Moreover,

some control actions can be event driven when applying rule-based control (e.g. if-then-

else rules). Introducing discrete controllers and sensors as well as event-driven control in

the model results in a so-called hybrid system.

Noise sources

To obtain realistic and useful evaluation results from an investigation of a control strategy, the

strategy must be subjected to various types of errors and disturbances encountered in real

operation. One of the most important sources of errors is sensor noise and delays. Realistic

sensor model behaviour requires the dynamic properties and disturbance sources to be

represented. This typically includes modelling of noise and time response and, if not a

continuous sensor, the sampling and measuring interval (Rieger et al., 2003). Noise gener-

ation must be done individually for each sensor in the system so that it is truly independent.

The stiffness problem

A system is called stiff, when the range of the time constants is large. This means that

some of the system states react quickly whereas some react sluggishly. The ADM1 is a

very stiff system with time constants ranging from fractions of a second to months.

This makes the simulation of such a system challenging and to avoid excessively long

simulation times, one needs to be somewhat creative in implementing the model.

Simulating stiff systems in Matlab/Simulink

Some of the solvers in Matlab/Simulink are so-called stiff solvers and, consequently,

capable of solving stiff systems. However, a problem common to all stiff solvers is the

difficulty in handling dynamic input and especially noise and step changes. The more

stochastic or random an input variable behaves, the more problematic is the simulation

using a stiff solver. Simulation of the BSM2 is, thus, subject to the following dilemma.

BSM2, which includes ASM1 and ADM1 models, is a very stiff system and, conse-

quently, a stiff solver should be used. However, since BSM2 is a control simulation

benchmark, noise must be included, calling for an explicit (i.e. non-stiff) solver.

In a stiff system it is sometimes possible to reformulate some of the system equations in

order to omit the fastest states. The rationale for this is that from the slower states’ point of

view, the fast states can be considered instantaneous and possible to describe by algebraic

equations. Such systems are normally referred to as differential algebraic equation (DAE)

systems. By rewriting an ordinary differential equations (ODE) system to a DAE system, the

stiffness can be decreased, allowing for explicit solvers to be used and for stochastic

elements to be incorporated. The drawback is that the DAE system is only an approximation

C
.R

o
sen

et
al.

13

of the original system and the effect of this approximation must be considered and investi-

gated for each specific simulation model. In Batstone et al. (2002), it is suggested that the pH

ðSþH Þ state is calculated by algebraic equations. However, this will only partially solve the

stiffness problem. There are other fast states and a closer investigation suggests that the state

describing hydrogen (Sh2) also needs to be approximated by an algebraic equation.

Implementing ADM1 in Matlab/Simulink

This ADM1 implementation in Matlab/Simulink deviates somewhat from the model

description in Batstone et al. (2002). There are mainly two reasons for this. Firstly, the

ADM1 is implemented so that it is consistent with the BSM2. Secondly, the compu-

tational requirements must be taken into account.

ADM1/ASM1 state variable transformations

As the state variables representing the ASM1 and ADM1 models are quite different, model

interfaces are necessary when combining the two processes (as in BSM2). A rudimentary

interface is proposed in Batstone et al. (2002). However, the benchmark developers have

created a more elaborate yet simple transformer. The interfaces between ASM1 and ADM1

are enhanced versions of the interfaces described in Copp et al. (2003). The ASM1 to ADM1

transformation initially removes any oxygen and nitrate in the wastewater with an associated

COD reduction and then divides the remaining COD and nitrogen components into relevant

ADM1 state variables (e.g. proteins, lipids, carbohydrates, inerts). Obviously, primary and

secondary sludge characteristics differ. However, the enhanced interface handles both types

using the same parameter set and will lead to the expected differences in terms of gas

production etc. in the digester. No inputs entering the digester are defined as composite

material and therefore the disintegration process of ADM1 will only influence the behaviour

of the model in terms of internal disintegration of products arising from biomass decay. This

approach allows the modeller to clearly separate the disintegration of raw sludge from

internal digester sludge. The ADM1 to ASM1 interface amalgamates the large number of

ADM1 state variables back into ASM1 state variables. At all times, COD, nitrogen and

charge balances are maintained. Work is also on-going to develop a more general protocol

for interfacing models based on Petersen matrices (Vanrolleghem et al., 2005). In Zaher et al.

(2006), the results of this protocol are evaluated and compared to the Copp et al. interface

for the specific case of ASM1/ADM1 transformations.

Mass balances

To maintain complete mass balances for all model components (COD, N, etc.) is a funda-

mental issue of any model. Based on the description in Batstone et al. (2002), a few

comments are required to avoid problems when implementing the model. The original

ADM1 includes a process referred to as disintegration, where a composite material (XC)

is transformed into various components (SI, Xch, Xpr, Xli and XI). Assuming one COD

mass unit of XC completely disintegrating will produce:

f sI;xcSIþ f xI;xcXIþ f ch;xcXchþ f pr;xcXprþ f li;xcXli¼0:1SIþ0:25XIþ0:2Xchþ0:2Xprþ0:25Xli

A COD balance exists as long as the sum of all f i;xc ¼ 1: However, the proposed

nitrogen content of XC (Nxc) is 0.002 kmoleN/kg COD. If we instead calculate the nitro-

gen content of the disintegration products (kmole N) using parameter values from

Batstone et al. (2002), we obtain:

NI·0:1SI þ NI·0:25XI þ Nch·0:2Xch þ Naa·0:2Xpr

þ N li·0:25Xli ¼ 0:0002þ 0:0005þ 0:0014 ¼ 0:0021

C
.R

o
sen

et
al.

14

(NI ¼ 0:002; Nch ¼ 0; Nli ¼ 0 and Naa ¼ 0:007 kmoleN=kg COD). This means that for

every kg of COD that disintegrates 0.1 mole of N is created (a similar problem exist for

the carbon mass balance and we recommend that the carbon content of XC (Cxc) is chan-

ged accordingly). Obviously, the nitrogen contents and yields from composites are highly

variable and may need adjustment for every specific case study but the “default”

parameter values should close the mass balances. In this paper, we suggest new values

for f xI;xc ¼ 0:2 and f li;xc ¼ 0:3: For the specific benchmark implementation we have also

modified NI for particulate inerts to 0:06=14 < 0:00429 kmoleN=kg COD to be consistent

with the ASM1 model. For the same reason NI for soluble inerts is set to zero. Because

of the latter modifications Nxc is adjusted to 0:0316=14 < 0:00226 kmoleN=kg COD to

maintain the nitrogen balance.

The state variables inorganic carbon and inorganic nitrogen may act as source or

sink terms to close mass balances. However, the provided stoichiometric matrix is not

defined to take this into account. Let us take an example: decay of biomass (processes

no 13–19) produces an equal amount of composites on a COD basis. However, the

carbon content may certainly vary from biomass to composites resulting from decay.

It is suggested in Batstone et al. (2002) that the nitrogen content of bacteria (Nbac) is

0.00625 kmoleN/kg COD, which is three times higher than the suggested value for Nxc.

In such a case, it is logical to add a stoichiometric term (Nbac–Nxc) into the Petersen

matrix, which will keep track of the fate of the excess nitrogen. The same principle

holds for carbon during biomass decay, i.e. (Cbac–Cxc). A strong recommendation is to

include stoichiometric relationships for all 19 processes regarding inorganic carbon and

inorganic nitrogen to guarantee that the mass balances are closed and the conservation

law fulfilled at all times for COD, carbon and nitrogen. Moreover, such an approach

makes model verification much easier. The complete set of equations is presented in

Rosen and Jeppsson (2006).

Acid-base equations

The acid-base equilibrium equations play an important role in ADM1 (e.g. for pH

calculations). For persons primarily familiar with AS models these equations may create

a problem as they do not normally appear in those. Moreover, Batstone et al. (2002)

focuses more on how the implementation should be done by implicit algebraic equations

and is not completely clear on the ODE implementation. The general model matrix

describes the transformations of valerate (Sva,total), butyrate, propionate, acetate, inorganic

carbon and inorganic nitrogen. However, all these substances are made up by acid-base

pairs (e.g. Sva;total ¼ Sva2 þ Shva). It is suggested in Batstone et al. (2002) (Table B.4) that

when using ODEs, the equations are defined for each acid and base, respectively. Based

on our experiences it is more advantageous to implement the ODEs based on the total

substances and their acid-base components instead. The remaining part can always be

calculated as the total minus the calculated part. This approach actually makes the model

more understandable in other respects, and due to numerical issues (we are subtracting

very small and similar sized numbers) the errors of calculated outputs are much closer to

the solution a DAE set-up would provide (when using a numerical solver with the same

tolerance to integrate the ODEs). Using valerate as an example, the process rate (A4) in

Batstone et al. (2002) is:

KA;Bva Sva2S
þ
H 2 Ka;vaShva

� �

and herein we replace Shva by Sva,total–Sva- and obtain

KA;Bva Sva2 Ka;va þ SþH
� �

2 Ka;vaSva;total
� �

C
.R

o
sen

et
al.

15

and, consequently, change the stoichiometry since Sva,total is not affected when the equili-

brium of Sva- is changing. If we select the value of KA,Bva large enough (in our case 1010)

it is clear that this transformation has provided us with the same equation as described

for the DAE implementation (Batstone et al., 2002, Table B.3). The complete set of

equations is given in Rosen and Jeppsson (2006). If using the suggested implicit solver to

calculate the pH (or SþH) at every integration step (see below) then the above problem

will no longer be an issue.

Algebraic solver for the pH ðS1
H Þ and Sh2 states

As mentioned above, stiffness of the ADM1 can be reduced by approximating the

differential equations of the pH and Sh2 states by algebraic equations. An implicit

algebraic equation for the pH calculation is given in Batstone et al. (2002) (Table B.3).

The differential equation for the Sh2 state, explicitly given in Rosen and Jeppsson (2006),

can be approximated by an algebraic equation in a similar way as was the case for the

pH state, simply by setting its differential to zero (assuming fast dynamics). The obtained

implicit algebraic equations are non-linear and are solved by an iterative numerical

method. The Newton–Raphson method used in Volcke et al. (2005) for calculation of

the pH and equilibrium concentrations is implemented. By using this method the new

value of the unknown state is calculated at each iteration step as:

S ¼ S0 2
EðS0Þ

dEðSÞ=dSjS0

where S0 is the value of the state obtained from the previous iteration step and E(S0)

is the value of the implicit algebraic equation that has to be zero for the equilibrium.

The gradient of the algebraic equation dE(S)/dS is also needed for calculation of the new

state value. The iteration is repeated as long as E(S0) remains larger than the predefined

tolerance value, which in our case is set to 10212. Normally only two or three iterations

are required to solve the equation at each time step.

Inhibition functions

Batstone et al. (2002) used switch functions to account for inhibition due to pH. These

functions are, however, discontinuous and in a stiff system, such a switch can favour

numerical instabilities. To reduce this risk, a number of alternative functions can be used

to express the inhibition due to pH. Expressions based on hyperbolic tangents are often

used in chemical engineering:

IpH ¼
1

2
ð1þ tan ðawÞÞ; withw ¼

pH 2 pHLLþpHUL

2
pHLLþpHUL

2

Values of a ¼ 11 for IpH,aa and a ¼ 22 for IpH,ac and IpH,h2, respectively, are appropriate

to fit the function given in Batstone et al. (2002). Another option is functions based on

Hill functions:

IpH ¼
pHn

pHn þ Kn
pH

; withKpH ¼
pHLL þ pHUL

2

Siegrist et al. (2002) used a Hill inhibition function based on the hydrogen ion concen-

tration instead. For the ADM1, this would give the following expression:

IpH ¼
Kn

pH

Sþ
n

H þ Kn
pH

; withKpH ¼ 102
pHLLþpHUL

2

C
.R

o
sen

et
al.

16

The appropriate values of n in the in the respective Hill functions are quite different.

To fit the original function given in Batstone et al. (2002), n ¼ 24 for IpH,aa when the

pH-based Hill function is used and n ¼ 2 for the hydrogen ion-based function. For IpH,ac
and IpH,h2 the respective values of n are 45 and 3. It should be noted that the appropriate

values of n are dependent of the values of pHLL and pHUL. For any practical purpose, the

choice of function among the three above is arbitrary but for BSM2 the hydrogen ion

based function is chosen.

The gas flow equation

In Batstone et al. (2002), two different expressions for the gas flow rate are given. For

BSM2, the expression based on an over-pressure in the head space is used: qgas ¼ kpðPgas –

PatmÞ: The reason for this choice is that the other expression gives a nervous behaviour in

the flow rate, slowing down the simulations and propagating noise to other variables.

A reasonable choice for the constant kp is 5·104, which will yields an over-pressure at

approximately 50 mbar in the head space.

Results and discussion

To evaluate the model implementations proposed in this paper, a number of simulation

tests are carried out. These tests include: 1) steady-state simulations, 2) dynamic simu-

lations for two weeks to compare the transient behaviour in detail, and 3) dynamic

simulations for 609 days to compare overall simulation times. The model implemen-

tations investigated are: ODE – the differential equation implementation (Rosen and

Jeppsson, 2006); DAE1 – differential equations with algebraic solution of pH ðSþHÞ

(Batstone et al., 2002); DAE2 – differential equations with algebraic solution of pH and

Sh2. All three models are tested as a part of the BSM2. This means that the behaviour

reported here refers to the whole BSM2 system (Figure 1). The simulations are carried

out using a modern PC running Windows XP and Matlab/Simulink Release 13.

The ASM1, the clarifiers and the ADM1 are all implemented as MEX-files based on C

source code.

Comparison of model results

The three model implementations are simulated for 200 days to reach steady state. Both

relative and absolute errors are investigated using the ODE simulation as a reference.

Only minor errors were encountered – the largest relative errors in the range of 10211

and the largest absolute errors, 10212. The results are not surprising since the differences

between the models are in the dynamic description of the equations.

Although the model implementations differ in the description of pH and Sh2 dynamics,

no significant differences are obtained when the transients in the states are investigated.

The relative errors are typically in the range of 1025 or smaller, again using the ODE

implementation as reference. However, a first comparison between the ODE and the

DAE implementations reveals a severe discrepancy between the pH dynamics of the

respective implementations. This discrepancy can be traced to the value of the rate coeffi-

cient for the base to acid reactions. In Batstone et al. (2002), the suggested value for KA,i

is 108 M21d21. This value is too small if the dynamic results of an ODE and a DAE

implementation are to be compared. The value must be increased to 1010 M21d21

(or higher) for the models to give identical results.

Simulation speed

The simulation speed is tested using stiff and non-stiff solvers available in Matlab/Simulink.

The three implementations are tested using models with sensors and controllers. The sensors

C
.R

o
sen

et
al.

17

and controllers are simulated with and without discontinuities, noise and time delays.

The conclusions from this study are that if the model is not affected by noise or discontinu-

ities, the ODE implementation using a stiff solver is superior to the other implementations.

However, if the model is affected by noise and discontinuities, the stiff solvers perform

poorly. Using DAE2 with a non-stiff solver results in a simulation time for all 609 days of 50

minutes (relative integration tolerance of 1025). For ODE and DAE1 the corresponding

simulations result in simulation times exceeding one day. It is interesting to note that the

implementation of only a pH solver does not give any significant improvement in simulation

speed and substantial improvement is not obtained unless the fast state associated with Sh2 is

removed. When stiff solvers are used for both ODE and DAE1, the simulation times are

reduced to slightly less than one day. However, this is only achieved when the number of

noisy and discontinuous sensors/controllers is limited to one or two. When more are

implemented, stiff solvers fail completely to solve the systems.

To better understand this dramatic improvement in simulation speed, an analysis of

the eigenvalues of the linearised ADM1 implementations, is used. Investigation of the

eigenvalues of the system matrix provides an indication on how the distribution of time

constants appears in the system at a certain operating point. From the analysis, it is

evident that the eigenvalue associated with the pH ðSþHÞ is a factor 10–1000 (depends on

the chosen value of KA,i) larger than the one associated with the Sh2 state. However, the

third largest eigenvalue is only about 1/100 of that of associated with Sh2. Clearly, both

pH and Sh2 must be removed to significantly reduce the stiffness of the system. However,

it should be noted that the working point investigated is the anticipated working point of

the BSM2.

Conclusions

In this paper, several aspects of the Matlab/Simulink implementation of the ADM1 for

use in the BSM2 are discussed. A number of practical implementation issues are

discussed, e.g. mass-balance discrepancies. It also is shown that optimising the compu-

tational efficiency of the BSM2 implies that the stiffness of the ADM1 must be overcome

so that fast simulation is achieved for dynamic input data, using a solver that handles

stochastic inputs. This means that the stiff solvers provided by Matlab/Simulink cannot

be used. Instead, rewriting the system as a DAE system is the only possibility. It is

shown that it is not sufficient to describe only pH as an algebraic state. Also the hydrogen

state must be approximated by an algebraic equation to obtain satisfying results.

The reformulation of the model results in a decrease in simulation time of the BSM2

evaluation period from approximately a day to less than an hour. It should be stated

that development of the BSM2 is ongoing and the description given in this paper

only describes the state of the work at this point. Minor changes may be imposed in

the future.

Acknowledgements

The authors would like to express their gratitude to Eveline Volcke and Usama Zaher

(BIOMATH, Ghent University), Dr John Copp (Primodal Inc., Hamilton) and Dr Jens

Alex (ifak system GmbH, Magdeburg) for providing us their source codes and helping us

understand the intrinsic mysteries of pH solvers. Dr Damien Batstone (AWMC, Univer-

sity of Queensland) has been the perfect partner for discussing all types of issues related

to details of the ADM1. The financial support provided for Dr Vrecko and Dr Gernaey

through the European Community’s Human Potential Programme under contract HPRN-

CT-2001-00200 (WWT&SYSENG) is gratefully acknowledged.

C
.R

o
sen

et
al.

18

References
Batstone, D.J., Keller, J., Angelidaki, R.I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M.,

Siegrist, H. and Vavilin, V.A. (2002). Anaerobic Digestion Model No.1, STR No.13. IWA Publishing,

London, UK.

Copp, J.B. (ed.) (2002). The COST Simulation Benchmark — Description and Simulator Manual. Office for

Official Publications of the European Communities, Luxembourg.

Copp, J., Jeppsson, U. and Rosen, C. (2003). Towards an ASM1-ADM1 state variable interface for plant-

wide wastewater treatment modelling. 76th Annual WEF Conference and Exposition, Oct. 11–15,

Los Angeles, CA, USA.

Gernaey, K.V., Rosen, C. and Jeppsson, U. (2005). Phenomenological modelling of wastewater treatment

plant influent disturbance scenarios. 10th Int. Conf. on Urban Drainage, Aug. 21–26, Copenhagen,

Denmark.

Jeppsson, U., Rosen, C., Alex, J., Copp, J., Gernaey, K.V., Pons, M.-N. and Vanrolleghem, P.A. (2006).

Towards a benchmark simulation model for plant-wide control strategy performance evaluation of

WWTPs. Wat. Sci. Tech., 53(1), 287–295.

Rieger, L., Alex, J., Winkler, S., Boehler, M., Thomann, M. and Siegrist, H. (2003). Progress in sensor

technology – progress in process control? I: Sensor property investigation and classification. Wat. Sci.

Tech., 47(2), 103–112.

Rosen, C. and Jeppsson, U. (2006). Description of the ADM1 for benchmark simulations. Technical Report,

Department of Industrial Electrical Engineering and Automation (IEA), Lund University, Lund, Sweden.

Siegrist, H., Vogt, D., Garcia-Heras, J.L. and Gujer, W. (2002). Mathematical model for meso- and

thermophilic anaerobic digestion. Environ. Sci. Tech., 36, 1113–1123.

Vanrolleghem, P.A., Rosen, C., Zaher, U., Copp, J., Benedetti, L., Ayesa, E. and Jeppsson, U. (2005).

Continuity-based interfacing of models for wastewater systems described by Petersen matrices. Wat. Sci.

Tech., 52(1–2), 493–500.

Volcke, E.I.P., Van Hulle, S., Deksissa, T., Zaher, U. and Vanrolleghem, P.A. (2005). Calculation of pH and

concentration of equilibrium components during dynamic simulation by means of a charge balance.

BIOMATH Tech. Report, Ghent University, Ghent, Belgium.

Zaher, U., Grau, P., Benedetti, L., Ayesa, E. and Vanrolleghem, P.A. (2006). Transformers for interfacing

anaerobic digestion models to pre- and post-treatment processes. Environ. Model. Softw., (in press).

C
.R

o
sen

et
al.

19

http://dx.doi.org/10.1021/es010139p
http://dx.doi.org/10.1021/es010139p

	Implementing ADM1 for plant-wide benchmark simulations in Matlab/Simulink
	Introduction
	ADM1 for BSM2
	Dynamic inputs
	Control actions
	Noise sources

	The stiffness problem
	Simulating stiff systems in Matlab/Simulink

	Implementing ADM1 in Matlab/Simulink
	ADM1/ASM1 state variable transformations
	Mass balances
	Acid-base equations
	Algebraic solver for the pH &f;(&msubsuper;&mrow;&i;S&/i;&/mrow;&mrow;H&/mrow;&mrow;+&/mrow;&/msubsuper;)&/f; and &i;S&/i;
	Inhibition functions
	The gas flow equation

	Results and discussion
	Comparison of model results
	Simulation speed

	Conclusions
	Acknowledgements
	References

