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Chemometrics, the application of mathematical and statistical methods to the analysis of chemical data, 
is finding ever widening applications in the chemical process environment. This article reviews the chemo- 
metrics approach to chemical process monitoring and fault detection. These approaches rely on the for- 
mation of a mathematical/statistical model that is based on historical process data. New process data can 
then be compared with models of normal operation in order to detect a change in the system. Typical 
modelling approaches rely on principal components analysis, partial least squares and a variety of other 
chemometric methods. Applications where the ordered nature of the data is taken into account explicitly 
are also beginning to see use. This article reviews the state-of-the-art of process chemometrics and current 
trends in research and applications. Copyright © 1996 Published by Elsevier Science Ltd 
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Chemometrics is often thought  of  as a sub-discipline of  
chemistry, and in particular, analytical chemistry. 
Recently, 'chemometric techniques' have been applied 
to problems that are often thought of  as being in the 
domain of the chemical engineer, i.e. chemical 
processes. These applications can be roughly divided 
between those directed at maintenance of process 
instruments, e.g. calibration, and those that are con- 
cerned with maintenance of  the process itself, e.g. sta- 
tistical process control and dynamic modeling. Our 
focus will be on the latter area. In this article we will 
review some of the basic chemometric techniques, such 
as Principal Components  Analysis (PCA) and Partial 
Least Squares (PLS), and some of the newer and more 
advanced methods, such as Multi-way PCA and PLS. 
Some example problems utilizing these methods in 
chemical process monitoring and dynamic process mod- 
eling will be considered. 

Defini t ion 

Before moving on to chemometric techniques, it is 
important  that we define chemometrics. This has been a 
matter  of  debate in the technical communi ty  for some 
time; ],2 however, the authors choose the following deft- 

*Paper presented at the IFAC Workshop on On-line Fault Detection 
and Supervision in the Chemical Process Industries held at Newcastle, 
UK in June 1995 

nition: Chemometrics is the science of relating measure- 
ments made on a chemical system to the state of  the sys- 
tem via application of mathematical  or statistical 
methods. It is clear from this definition that chemomet-  
rics is data-based. The goal of  many chemometrics tech- 
niques is the production of  an empirical model, derived 
from data, that allows one to estimate one or more 
properties of  a system from measurements. Chemical 
systems, of  course, include dynamic chemical processes. 

P C A :  theory and appl icat ions  

It has been pointed out several times in the recent liter- 
ature that chemical processes are becoming more heav- 
ily instrumented and the data is recorded more 
frequently. 3,4 This is creating a data overload, and the 
result is that a good deal of the data is 'wasted' ,  i.e. no 
useful information is obtained from it. The problem is 
one of both compression and extraction. Generally, 
there is a great deal of  correlated or redundant infor- 
mation in process measurements.  This information must 
be compressed in a manner  that retains the essential 
information and is more easily displayed than each of 
the process variables individually. Also, often essential 
information lies not in any individual process variable 
but in how the variables change with respect to one 
another, i.e. how they co-vary. In this case the informa- 
tion must be extracted from the data. Furthermore,  in 
the presence of large amounts  of  noise, it would be 
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desirable to take advantage of some sort of signal aver- 
aging. 

Principal Components Analysis 

Principal Components Analysis (PCA) is a favorite tool 
of chemometricians for data compression and informa- 
tion extraction? ,6 PCA finds combinations of variables 
or factors that describe major trends in a data set. 
Mathematically, PCA relies on an eigenvector decom- 
position of the covariance or correlation matrix of the 
process variables. In this work we will use the conven- 
tion that rows of a data matrix X correspond to samples 
while columns correspond to variables. For a given data 
matrix X with m rows and n columns the covariance 
matrix of X is defined as 

x T x  
c o v ( X )  - (1) 

m - 1  

This assumes that the columns of X have been 'mean 
centered', i.e. adjusted to have a zero mean by subtract- 
ing off the original mean of each column. If the 
columns of X have been 'autoscaled', i.e. adjusted to 
zero mean and unit variance by dividing each column 
by its standard deviation, Equation 1 gives the correla- 
tion matrix of X. (Unless otherwise noted, it is assumed 
that data is either mean centered or autoscaled prior to 
analysis.) PCA decomposes the data matrix X as the 
sum of the outer product of  vectors t~ and p~ plus a 
residual matrix E: 

X = tl[Tl '.- t2pr2 + ... + tkpTk + E (2) 

Here k must be less than or equal to the smaller dimen- 
sion of X, i.e. k ___ rain {m, n}. The t~ vectors are known 
as scores and contain information on how the samples 
relate to each other. The p~ vectors are eigenvectors of 
the covariance matrix, i.e. for each p~ 

c o v ( X ) l ] i  : /~iPi ( 3 )  

where X~ is the eigenvalue associated with the eigenvec- 
tor p, In PCA the p~ are known as loadings and contain 
information on how variables relate to each other. The 
t~ form an orthogonal set (t,Ttj = 0 for i ~j), while the p~ 
are orthonormal (piTpj = 0 for i ¢j, p Tpj = 1 for i = j). 
Note that for X and any t ,  pi pair 

Xp~ : t i (4) 

This is because the score vector t, is the linear combina- 
tion of  the original X data defined by p, The L, p~pairs 
are arranged in descending order according to the asso- 
ciated A, The X~ are a measure of the amount  of vari- 
ance described by the t ,  p~ pair. In this context, we can 
think of variance as information. Because the t ,  p~ pairs 
are in descending order of  ,~, the first pair capture the 
largest amount  of  information of  any pair in the decom- 

position. In fact, it can be shown that the tj, Pl pair cap- 
ture the greatest amount  of variation in the data that it 
is possible to capture with a linear factor. Each subse- 
quent pair capture the greatest possible amount  of vari- 
ance remaining at that step. 

The concept of principal components is shown graph- 
ically in Figure 1. The figure shows a three-dimensional 
data set where the data lie primarily in a plane, thus the 
data are well described by a two principal component 
(PC) model. The first eigenvector or PC aligns with the 
greatest variation in the data while the second PC aligns 
with the greatest amount  of variation that is orthogonal 
to the first PC. 

Generally it is found (and it is usually the objective) 
that the data can be adequately described using far 
fewer factors than original variables. Thus, the data 
overload experienced in chemical process monitoring can 
be solved my monitoring fewer scores (weighted sums of 
the original variables) than original variables, with no 
significant loss of information. Also, PCA often pro- 
duces linear combinations of variables that are useful 
descriptions, or even predictors, of particular process 
events. These combinations of variables are often more 
robust indicators of process conditions than individual 
variables due to the signal averaging aspects of PCA. 

It is also possible to calculate a lack of model fit sta- 
tistic, Q. Q is simply the sum of squares of each row 
(sample) of E (from Equation 2), for example, for the ith 
sample in X, x/  

Q, = e,ei T = xi(l - P~PkT)xi T (5) 

where e~ is the i th row of  E, Pk is the matrix of the first 
k loadings vectors retained in the PCA model (where 
each vector is a column of Pk) and ! is the identity 
matrix of appropriate size (n by n). The Q statistic indi- 
cates how well each sample conforms to the PCA 
model. It is a measure of the amount of variation in 
each sample not captured by the k principal compo- 
nents retained in the model. 

A measure of the variation within the PCA model is 
given by Hotelling's T 2 statistic. 7 ,2 is the sum of nor- 
malized squared scores defined as 

~ 4  

2 
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Figure 1 Principal component model of three-dimensional data set 
lying primarily in a single plane 
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Ti 2 = ti~, Iti T = x ip /~ - IpTX,  T (6) 

where t, in this instance refers to the i 'h row of Tk, the 
matrix of  k scores vectors from the PCA model. The 
matrix A -~ is a diagonal matrix containing the inverse 
eigenvalues associated with the k eigenvectors (principal 
components)  retained in the model. 

Multivariate statistical process control 

Once developed, PCA models can be combined with 
tools and techniques from univariate statistical process 
control (SPC) to form multivariate statistical process 
control (MSPC) tools. 3,4,7 9 Control limits can be placed 
on the process scores, sum of scores' T z, residual Q, or 
residuals of  individual variables (single columns of  E). 
There are multivariate analogs to Shewart, range and 
C U S U M  charts. When used for MSPC purposes, PCA 
models have the additional advantage that the scores 
variables produced which are linear combinations of  the 
original variables, are more normally distributed than 
the original variables themselves. This is a consequence 
of the central limit theorem, which can be stated as fol- 
lows: if the sample size is large, the theoretical sampling 
distribution of the mean can be approximated closely 
with a normal distribution/° In our case, we are typi- 
cally sampling a large number of  variables when we 
form the PCA scores. Thus, we would expect the scores, 
which are a weighted sum like a mean, to be approxi-  
mately normally distributed. A word of caution is 
advised here, however. In some instances, if score values 
are associated with a controlled property of  the system 
we would not expect the scores to be normally distrib- 
uted. 

Once a PCA model of a data set has been obtained, 
confidence limits can be established for 7 4 , the overall 
residual Q and for the residuals on individual variables. 
Given the eigenvalues A,, of the covariance matrix of  X 
confidence limits can be calculated for Q as follows: 7 

1 

Q~ = OI Ol ®; (7) 

where 

®i = .~Zj for i = 1 - 3  
/=k+l 

(8) 

and 

components (equal to the smaller of  the number of  vari- 
ables or samples in X). 

Statistical confidence limits for T 2 can be calculated 
by means of the F-distribution as follows: 

_ k ( m T _ ! )  (lO) 

Here m is the number  of  samples used to develop the 
PCA model and k is the number  of  principal compo- 
nent vectors retained. 

Some discussion of the geometric interpretation of Q 
and ~ is perhaps in order. As noted above, Q is a mea- 
sure of  the variation of the data outside of the PCA 
model. Imagine for a moment  a process with three vari- 
ables restricted to lie on a plane that cuts through 3- 
space such as the one shown in Figure 1. Such a system 
would be well described by a 2 PC model. Q is a mea- 
sure of  the distance off the plane formed by the first 2 
PCs. In fact Q is the Euclidean distance of the operat- 
ing point from the plane formed by the 2 PC model. 
The Q limit defines a distance off the plane that is con- 
sidered unusual for normal operating conditions. 7 "2 , on 
the other hand, is a measure of  the distance from the 
multivariate mean to the projection of the operating 
point on to the 2 PCs. The T 2 limit defines an ellipse on 
the plane within which the operating point normally 
projects. 

The residual variance for each variable can be esti- 
mated for the PCAmode l .  3 I f  it is assumed that the 
eigenvalues associated with the eigenvectors (PCs) not 
retained in the model are all the same (a common 
assumption), then the variance in the residual of  the j~h 
variable can be estimated from 

s] = Z. - ~ Z, 1 -  P{.i 
i=l z=l 

(11) 

which requires only PCs and eigenvalues retained in the 
model. The first term on the right hand side in Equation 
11 can be replaced with the sum of the diagonal ele- 
ments of  the covariance matrix, therefore only the first 
k eigenvalues of  the covariance matrix are required. 
Given the estimate of the variance of the residuals ,~:-~j, 
the standard F test with the appropriate  degrees of 
freedom can be used to determine if the system or 
its sensors (variables) have changed. This test is best 
performed using several samples. The test checks to see 
if 

h 0 = I 2OIO2 (9) 

3®~ where 

In Equation 7 ca is the standard normal deviate corre- 
sponding to the upper (1 - a) percentile. In Equation 8, 
k is the number  of  principal components retained in the 
process model and n is the total number of  principal 

(12) 

Vnew = m .... (13) 

Void = mold - k  - 1 (14) 
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where mn~w and mo~d are the number of samples in the 
test and training sets, respectively, and k is the number 
of PCs retained in the model. When the inequality of 
Equation 12 holds, then a change has occurred in the 
system to a confidence level of 1 - a .  

The mean residual should be zero for all the vari- 
ables. The t-test can be used to detect a shift in the 
mean away from zero. In this case the hypothesis that 
the means are equal is to be tested. Thus, the t-test 
reduces to 

( X o t d  - Xnow)(Vol~ - Vnew)05 
/t~tot ~- 0.5 

- -  -t- - -  ('OoldSol d "k DnewSnew) 
Dold Dnew 

(15) 

where the degrees of freedom are both one greater than 
for the case given above. For  the purpose of setting lim- 
its, the variances can be assumed to be equal to the vari- 
ance of the residuals of the calibration set calculated by 
Equation 11. Once the desired confidence level is cho- 
sen, it is possible to solve for the difference between old 
and new means that is just significant. 

Control limits can also be established for the scores, 
T. However, because the scores are related to the states 
of the process (which will be shown below), they are 
typically quite correlated in time (autocorrelated) and 
therefore cannot be assumed to be random and nor- 
mally distributed. Thus, control limits on the scores 
must be established based either on judgment concern- 
ing desired process operating limits or using more 
sophisticated time series modeling techniques that are 
beyond the scope of this manuscript. 

Relationship between PCA and state-space models 

A theoretical connection exists between PCA and state 
space models. These models are commonly used by the 
process control community for describing dynamics of a 
chemical process. Abundant  literature is available con- 
cerning the state-space formalism, T M  however, it is use- 
ful to provide a brief introduction here. Consider a 
linear, time-invariant discrete, state-space process 
model: 

x(k + 1) = @x(k) + ru(k)  + ~(k) (16) 

y(k) = Cx(k) + e(k) (17) 

where x(k) is an n by 1 state vector at sampling period 
k, u(k) is the r by 1 vector of process inputs and y(k) is 
a p by 1 vector of process measurements. The vector 
v(k) represents the state noise or disturbance input to 
the process: e(k) is measurement noise. The ~,  F and C 
matrices are assumed constant. Equation 16 shows that 
the process state at time k + 1 is a function of the state, 
process inputs and disturbances at time k. Equation 17 
relates the process measurements to the process states 
and measurement noise. 

In the typical case of analyzing data from a chemical 
process, one collects the measurements y and forms 
them into a single matrix Y, where each row of Y cor- 
responds to a sample. PCA can then be used to decom- 
pose Y. It has been shown that, for processes where 
there are more measurements than states variations in 
the process states appear primarily as variations in the 
PCA scores, while noise mainly affects the residuals) 
This is the case where there are more elements in y than 
x. This allows one to consider only the noise properties 
of the system when deriving limits on PCA residuals; 
the dynamics of the process need not be considered 
explicitly. The rapid increase in the availability of 
process analytical instrumentation has drastically 
increased the instances of processes having more mea- 
surements than (significant) states. This connection 
between PCA and state-space models acts as a guide for 
the user as to where PCA can be applied directly on 
process outputs for process monitoring and fault detec- 
tion purposes. 

Application of  PCA to a chemical process 

As an example we now consider the use of PCA on data 
obtained from a Slurry-Fed Ceramic Melter (SFCM) 
test system. 8,~3-~5 This process converts nuclear fuel 
reprocessing waste into a stable borosilicate glass. A 
schematic of the process is shown in Figure 2. Feed to 
the melter, a relatively cool slurry of reprocessing waste 
and glass forming material is introduced from the top at 
the center of the melter. The molten glass in the melter 
is maintained at high temperature by passing electric 
current through it. Molten glass is drawn off and 
allowed to solidify for eventual long term storage in a 
geologic repository. 

Data on the SFCM process consists of temperatures 
measured by thermocouples at 20 locations in the 
melter. The temperatures are measured at 10 levels in 
each of  two vertical thermowells that are inserted into 
the molten glass pool. For this example, we will con- 
sider the temperature at 16 locations within the molten 
glass pool as shown in Figure 3. (The variables are 
arranged in the data set so that variables 1-8 are from 
the bottom to the top of thermowell number 1 and vari- 

Figure 2 Schematic  drawing of  slurry-fed ceramic melter  
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Figure 3 Temperature data from SFCM process 

ables 9-16 are from the bottom to the top of thermow- 
ell number 2.) It is immediately apparent from Figure 3 
that there is a great deal of correlation in the data. 
Many of  the variables appear to follow a sawtooth pat- 
tern. 

When PCA is performed on this data (after mean 
centering), it is found that three factors capture nearly 
97% of the variance or information in the data set, as 
shown in Table 1. Thus, the 16 variables can be replaced 
with three new variables, which are linear combinations 
of the original variables, with very little loss of  infor- 
mation. 

The first principal component scores for the SFCM 
data are shown in Figure 4. Recall that these scores are 
the linear combination of the original temperature vari- 
ables, defined by the loadings, that describe the greatest 
variation in the process data. The scores capture the 
sawtooth nature of the process data. The sawtooth pat- 
tern is attributable to changes in the level of the molten 
glass which is a controlled variable. The loadings plot 
for the first eigenvector or principal component is 
shown in Figure 5. The variables that contribute most 
to the first eigenvector are variables 6-8 and 14-16 
which correspond to thermocouples near the surface of 
the molten glass. The second and third PCs (not shown) 
capture variation that occurs between the two groups of 
measurement locations (which is not controlled) and 
variations of the overall process average temperature 
(which is controlled). 

As an example application of MSPC, detection of the 
failure of a single thermocouple in the SFCM process is 
shown in Figures 6 and 7. In this case, a thermocouple 
developed a bias, which has resulted in an increase in 
the model residual Q and in the residuals of the indi- 

Table 1 Variance captured by PCA model of  SFCM data 

Percent variance captured 
PC number  This PC Total 

1 88.0711 88.0711 
2 6.6974 94.7686 
3 2.0442 96.8127 
4 0.9122 97.7249 
5 0.6693 98.3942 
6 0.5503 98.9445 
7 0.3614 99.3059 
8 0.2268 99.5327 
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Figure 4 First principal component  scores for SFCM data 
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Figure 5 First principal component  loadings for SFCM data 

vidual variables, % This is because the correlation of 
the sensor with the remaining sensors has changed due 
to the bias, i.e. variation outside of the model has 
occurred. In Figure 6 the residual Q becomes unusually 
large starting at sample 51, with the residual increasing 
to over 100 times the 95% limit. Inspection of the indi- 
vidual residuals 3,'6:v in Figure 7 identifies the failure as 
being from thermocouple number 5. In this case there 
was no need for comparison to the statistical limits on 
individual variable residuals, however, for less obvious 
cases a comparison can help correctly identify the faulty 
sensor. 

Note that in this example it is not required that any 
of the individual variables drift outside their normal 
range. The MSPC model has detected a change in the 
system by identifying a change in the relationship 
between variables. Also, this change was much easier to 

10 3 
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10 l 

~ylO ° 

lO" 

10-2 

I 

10 20 3b 4b 5b 
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60 

Figure 6 PCA Q residual and 95% limit showing a thermocouple fail- 
ure at sample 50 
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Figure 7 PCA residual on individual vairables identifying failure on 
thermocouple 5 

identify by examining a single plot like Figure 6 as 
opposed to several plots as shown in Figure 3. 

Relationship between P C A  and A R X  models 

PCA can also be used with processes that are not as rich 
in outputs as the previous example. Consider a linear, 
time-invariant, discrete, single-input single-output, 
auto-recursive, extensive variable process model: 

y(k)  = a l y ( k -  1) + ... + a,y(k - n) + blu(k - 1) + 
... + bmu(k-m) (18) 

Here we see that the process output y at time interval k 
is linearly related to the n past outputs and the m past 
inputs u. Imagine now forming the matrix of lagged 
process outputs and inputs such that y(k)  through y(k  - 
n) were used along with the last m values of the process 
inputs. Thus, form the matrix 

X = 

I y(k) y ( k - 1 ) . . ,  y(k-n) u ( k - l ) . . ,  u(k-m) 1 
y ( k + l  y(k) ... y(k-n+l) u(k) ... u ( k - m + l )  

Y(k+2) y(k+l)..,y(k-n+2)i i u(k+l)...u(k-m+2)i i ! 

[. y(r) y(r 1) y ( r - n )  u(r  1). . .  u(r-m) J 
(19) 

where r = k + p, i.e. there are p + 1 samples in the 
matrix. It is clear from the definition of the ARX model 
in Equation 18 that the first column of the matrix X is 
linearly related to the remaining columns. Thus, the 
matrix formed above must be rank deficient. If PCA 
were applied to the matrix, it would be determined that 
the data could be described using n + m factors rather 
than n + m + 1. This, in fact, is the basis of a test to 
determine the correct order an ARX model identified 
from data. ~.19 It is easily seen how PCA could be used 
with such lagged variable matrices to detect changes in 
the input/output relationship of dynamic systems. 
Application of PCA to the lagged matrix has the effect 
of removing the major dynamics from the system, 
resulting in residuals that there are much better behaved 
(uncorrelated) than would otherwise be the case. 

As an example of  the use of PCA to monitor Single 
Input/Single Output (SISO) processes using lagged vari- 
ables, consider the under damped processes defined by 
the coefficients given in Table 2. The step responses of 
these processes are shown in Figure 8. Both of these 
processes have unit gain and have ~10% noise added to 
the output. 

A pseudo-random binary sequence was used as input 
to the original model and 300 samples were generated, 
A matrix of lagged variables was then formed consisting 
of the last five outputs and last four process inputs, 
PCA was used to model this matrix. As expected, a 7 
PC model captured all of the deterministic variation in 
the data. 

The PCA model was then applied to the modified 
model. The Q residual for the modified model data on 
the original is shown in Figure 9. Note that now over 
one-third of the samples have a Q value greater than the 
previously calculated 95% limit, indicating that a 
change in the system has occurred. If desired, a statisti- 
cal test which takes the residuals of multiple samples 
into account could be used in order to increase the sen- 
sitivity of the method. 

Mult i -way P C A  

The PCA method outlined above takes no explicit 
account of the ordered nature of the data set, i.e. the 
fact that the data was collected in a sequential manner. 
Reordering the samples would produce identical results. 
There are methods that explicitly consider that the data 
is ordered. These are referred to as multi-way methods 
because the data is usually organized into time ordered 
blocks that are each representative of a single sample or 
process run. The blocks are then arranged into multi- 
way matrices. Multi-way methods are particularly use- 
ful for the analysis of  batch process data. 

Consider the three-dimensional data array shown in 
Figure 10. A data matrix of this type would be typical 
of a series of runs of a batch process (or a series of sam- 
ples from a second order analytical technique such as 
GC-MS). Here there are j -- 1, 2, ..., J variables mea- 
sured at times k = 1, 2, ..., K throughout the batch. 
Similar data will exist on i - 1, 2 . . . . .  I runs of the batch 
process. The data can be summarized in the three- 
dimensional ( I X J x K )  array X. Different batch runs 
(samples) are arranged along the vertical side, different 
process measurements (variables) along the horizontal 

Table 2 ARX models of processes for lagged variable example 

Original model 

numerator (b) = 0.7796 0.9311 
denominator (a) = 1 0.1509 0.5598 

gain = 1, noise -10% 

Modified model 

numerator (b) = 0.8435 1.0074 
denominator (a) = 1 0.1509 0.7000 

gain = 1, noise -10% 
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side, and time recedes into the figure. Each horizontal 
slice through the array is a (JxK) matrix representing 
the time history for all variables of a batch of a partic- 
ular batch or sample. Each vertical slice made parallel 

to the front face of the cube is a (Ix  J) matrix repre- 
senting the values of all the variables in all the batches 
taken at a common time. A vertical slice made parallel 
to the side of the cube (the time axis) would represent a 
(IXK) matrix of all the time histories of a single variable 
for all the batches. 

There are several methods for decomposing the 
array. 2° These methods include the tri-linear decomposi- 
tion (TLD), 2~,22 parallel factor analysis (PARAFAC) 23,24 
and Tucker models. 2s In this work, we will consider one 
of the more straightforward approaches, that of multi- 
way PCA (MPCA). 26 Each of the decomposition meth- 
ods places different constraints on the resulting matrices 
and vectors. 

MPCA is statistically and algorithmically consistent 
with PCA and has the same goals and benefits. 27 In 
MPCA the array X is decomposed as the summation of 
the product  of score vectors (t) and loading matrices (P) 
plus a residual array E that is minimized in a least 
squares sense. 

R 

X = E t r  ® P r  + E  (20)  
r=l 

This decomposition is shown graphically in Figure 10. 
This decomposition is done in accordance with the prin- 
ciples of PCA and separates the data in an optimal way 
into two parts. The noise or residual part E is as small 
as possible and is associated with non-deterministic 
variation in the data. The systematic part, the sum of 
the t,®P,, expresses the deterministic variation as one 
fraction (t) related only to batches and a second frac- 
tion (P) related to variables and their time variation. 

MPCA is equivalent to performing PCA on a large 
two-dimensional matrix formed by unfolding the three- 
way array X in one of six possible ways, only three of 
which are mathematically unique. For example, one 
might unfold X in such a way as to put each of its ver- 
tical slices (Ix J) side by side to the right, starting with 
the slice corresponding to the first time interval. The 
resulting two-dimensional matrix has dimensions 
(IxJK). This particular unfolding allows one to analyze 
variability among the batches in X by summarizing 
information in the data with respect to variables and 
their time variation. A mathematically equivalent 
unfolding would be to take slices off the side of X and 
place them down the time axis, which also forms a 
matrix with dimensions (IxJK). (The latter unfolding 
orders the matrix with the history of each variable kept 
together while the former orders the matrix with all the 
measurements taken at the same time kept together.) 
One might also be interested in unfolding X in other 
ways, however, the unfolding shown in Figure 11 (and 
the equivalent unfolding mentioned above) are the only 
ways that keep batch (sample) specific information sep- 
arate from time and variable information. 

The MPCA algorithm proceeds as shown in Figure 
11. First the matrix is unfolded in one of the two equiv- 
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Figure 11 Algori thm for performing MPCA 

alent ways described above. Each column of the result- 
ing matrix is then mean centered and, if appropriate, 
scaled to unit variance (autoscaled). An eigenvector 
decomposition as described in Equations 1-3 is then 
applied to the unfolded X. Each of the p, however, is 
really an unfolded version of the loadings matrix Pr. 
After the p are obtained, the Pr can be obtained by 
reversing the unfolding procedure. In a similar manner, 
the three array E can be formed by folding the PCA 
residual matrix E. The Q and T 2 statistics can be calcu- 
lated using the unfolded solution as shown in Equations 
5 and 6. 

This version of MPCA explains variation of measured 
variables about their average trajectories. Subtracting 
the average trajectory from each variable (accomplished 
by mean centering the columns of the unfolded matrix 
X) removes the major nonlinear behaviour of the 
process. The t~h elements of the t-score vectors corre- 
spond to the t ~h batch (sample) and summarize the over- 
all variation in this batch with respect to the other 
batches in the database over the entire history of the 
batch. The P loading matrices summarize the time vari- 
ation of the measured variables about their average tra- 
jectories. The elements of P are the weights, which when 
applied to each variable at each time interval within a 
batch, give the t scores for that batch. 

Example of" MPCA 

As an example of MPCA consider the problem of mon- 
itoring a nuclear waste storage tank. A slurry of nuclear 

waste is stored in a large underground tank. Through 
processes such as radiolysis constituents in the waste are 
transformed into hydrogen, ammonia and nitrous 
oxide. To avoid build up of large volumes of gas bub- 
bles in the waste a pump periodically agitates the slurry 
causing releases of small volumes of gas. This is referred 
to as the 'mitigation' process. Release gas, and a large 
volume of inlet air, exit through a filter system in an exit 
vent that contains a gas chromatograph used for mea- 
suring hydrogen concentration, and an FTIR used for 
measuring concentrations of ammonia and nitrous 
oxide. These gases are monitored as a function of time 
and, when referenced to pump initiation, yield a signa- 
ture of the pump induced off-gassing. The pump opera- 
tion time can be considered short compared to off-gas 
times. The process can be considered batch and is 
repeated several times per week. 

Figure 12 shows mean signatures for the three mea- 
sured gases where pump initiation occurs at time 10. 
These three concentration trajectories define the signa- 
ture of the mitigation process. A three-way data matrix 
of signatures can be formed as in Figure 8 by arranging 
each operation of the pump ( a sample or batch) along 
the vertical axis, and each variable (gas concentration) 
along the horizontal azis with the time history receding 
into the figure. In our example we have 57 samples, 
three variables and consider 280 time increments. Thus, 
for this analysis our array is 57 × 3 × 280. 

Results of the MPCA decomposition of the mean 
centered data are given in Table 3. The first eight PCs 
capture over 98% of the variation in the data. The 
remaining PCs (not shown) captured less than 0.5% of 
the variation each. 

Loadings for the first principal component, which 
captures nearly 58% of the variance, are shown in Fig- 
ure 13. Here the loadings matrix has been unfolded in 
order clarify the presentation. This PC corresponds to 
gross changes in signature magnitude relative to the 
mean signature. It is apparent that most of the change 
is at times immediately after pump operation, which 
would be expected. A large fraction of the variance not 
captured by this linear combination of signatures (over 
40%) is related to variation in signature shapes. This 

1 2 (  

llX 

~ so 

e ~  

20 

~ de 

• 

, , , , J r :  

50 100 150 200 250 
Sign,auE "time 

Figure 12 Mean signature for measured gases from mitigation 
process 



Table 3 Variance captured by MPCA model of nuclear waste miti- 
gation process data 
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Figure 13 Loadings for first principal component from MPCA 
analysis of mitigation process data 

wide variety of signature shapes makes identification of 
subtle trends in signature magnitudes difficult to iden- 
tify when examining individual signatures from each 
pump operation. However, examination of the scores 
for the first principal component,  which are shown in 
Figure 14 as a function of pump operation date, 
indicates that signature magnitude decreases slightly 
with date. MPCA in this example improves the moni- 
toring capability of the nuclear waste mitigation 
process. 

Other factor analysis techniques 

While PCA is perhaps the most commonly used factor 
analysis technique, it is not the only one. In the sections 
that follow we consider two other techniques that are 
useful for extracting information like data produced by 
dynamic systems. Like MPCA, both of these techniques 
consider the ordered nature of the data set explicitly. 

Evolving Jaetor analysis 

Evolving factor analysis (EFA) is a general technique 
for analysis of multivariate data that has an intrinsic 
order. 2~ Like PCA, EFA can be used to determine how 
many 'factors' are present in a data set, i.e. how many 
independent sources of variation exist. In addition, 
EFA can be used to determine where in a data set the 
factors first appear and where they disappear. 
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The fundamental idea of EFA is to follow the singu- 
lar values of a data matrix as rows (samples) are added. 
Given a data matrix X (usually not mean-centered when 
performing EFA) with m samples and n variables one 
starts by determining the singular value of the first row 
(sample), then the first two rows, then the first three and 
so on until all m samples have been considered. Since 
the number of samples considered, and thus number of 
factors, evolves as the method proceeds, the technique is 
known as EFA. Of course, the number of non-zero sin- 
gular values can never be greater than the lesser of the 
number of rows and columns in the sub-matrix consid- 
ered. It is also customary to do EFA in the reverse 
direction, i.e. determine the singular values starting 
from the last row in the matrix and working upwards 
until all rows have been considered. 

Once the singular values have been determined, they 
(or the logarithms, since they usually span many orders 
of magnitude) can be plotted versus the ordered vari- 
able, e.g. time. As new factors enter the data new sig- 
nificant singular values will rise from the baseline of 
small singular values associated with noise in the data. 
Working in the reverse direction, significant singular 
values will rise from the baseline when factors disappear 
from the data matrix. 

As an example of  EFA, consider a batch chemical 
process that is being monitored by an NIR spectrome- 
ter. Suppose that there are three analytes of interest in 
the system, and that their concentration profiles (as a 
function of time) are as shown in the upper half of Fig- 
ure 15. For this example, the first analyte to appear can 
be considered a reactant, the second a desired product, 
and the third an unwanted byproduct of a side reaction. 
Furthermore, suppose that the pure component spectra 
for each analyte is as shown in the lower half of Figure 
15. Now imagine that neither the concentration profiles 
or the pure component  spectra are known a priori. 
Instead, the available data appear as in Figure 16, which 
shows the measured spectra as a function of time. 

Figure 17 shows the results of performing EFA on 
this data. From the forward moving singular values (the 
solid lines in the figure), it is apparent that no (spec- 
trally active) analytes are present initially. The first one 
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example batch process. 
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Figure 17 Evolving ['actor analysis of  example batch process data 
showing forwards  (solid) and backwards  singular values (dashed) 

appears at sample 5. A new analyte appears at sample 
30, where the singular value goes from the background 
level to a significant value. No other analytes appear 
until after sample 80. Working from the backwards sin- 
gular values (the dashed lines), it is apparent that there 
were two analytes present at the end of the data set 
since there are two significant singular values. Working 
from right to left, it is apparent that another singular 
value becomes non-zero at sample 60. This indicates the 

addition of analyte when moving backwards in time, 
which corresponds to the disappearance of an analyte 
when moving forward in time. 

Working from the EFA curves with the assumption 
that the first analyte to appear was also the first to dis- 
appear, we would conclude that the analyte which 
appeared at sample 5 disappeared at about sample 60. 
Additional analytes appeared at sample 30 and sample 
80 and remained until the end of the run. Thus, it would 
be determined from the analysis that some unwanted 
analyte appeared near the end of the batch. 

EFA provides important information concerning the 
times of existence of particular factors in the data set. 
This may be used to identify the onset of unusual con- 
ditions such as process disturbances, the failure of 
process instruments, or, as in our example, the produc- 
tion of an unwanted byproduct. 

Multivariate curve resolution 

EFA gives us important information regarding the sys- 
tem: the total number of factors present and their times 
of appearance and disappearance. However, it would be 
impossible to identify the compounds based on this 
information alone (unless one was very familiar with the 
system at hand). However, the results of EFA do pro- 
vide a starting point for the determination of the con- 
centration profiles and pure component spectra. 
Techniques for obtaining this additional information 
are known as self modeling curve resolution (SMCR) 29 
or multivariate curve resolution (MCR) 3° 

Simply put, the goal of MCR is to extract the num- 
ber of analytes, concentration profiles and pure compo- 
nent spectra with as few assumptions about the data as 
possible. Restated mathematically, given a data matrix 
X (not mean centered) that is the product of concentra- 
tion profiles C and pure component spectra A. 

X = CA (21) 

we wish to obtain physically meaningful C and A. Obvi- 
ously, this cannot be obtained directly from a principal 
components decomposition of X without additional 
information because the equation: 

= T P  v = TRR-IP T = CA (22) 

where 

X = X  + E = T p T + E  (23) 

has an infinite number of solutions for any arbitrary 
transformation matrix R. This results in a rotational 
and intensity ambiguity for C and A if no other infor- 
mation is known. 

Fortunately, more information is typically available. 
In particular, both concentrations and spectra are nec- 
essarily non-negative. Using this constraint, it is possi- 
ble to extract the pure component spectra through a 
procedure of alternating and constrained least squares 
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optimization. Starting with the results of  the EFA, it is 
possible to obtain an initial estimate of  the concentra- 
tion profiles, or at least, the range of existence in the 
data set of each component.  These concentration pro- 
files are used as the initial estimates in the constrained 
and alternating least squares optimization. At each iter- 
ation of the optimization, a new estimate of  the spectra 
matrix A and of the concentration profiles C is 
obtained. Iteration between the following two equations 
is performed: 

A = C+X (24) 

c : + ( 2 5 )  

where C + and A + are the pseudo inverses (see Equation 
30 below) of the matrices C and A respectively. At each 
iteration, any negative elements of  C and A are reset to 
zero, as are any elements known to be zero from inspec- 
tion of the EFA results and application of any known 
properties of  the system. Obviously, selection of the cor- 
rect number  of components  in the calculation of X is 
important.  Use of this matrix instead of the original 
data X improves the stability of  the calculations X is a 
noise filtered estimate of  X. 

It should be noted that there will be an intensity 
ambiguity in the results of  the MCR,  i.e. an ambiguity 
in the absolute magnitude of the concentration profiles 
and pure component  spectra obtained since, for any sin- 
gle pure component  matrix Xp 

1 
X = c a  = ~ c - - a  (26) P 

As an example of  MCR, we now return to the data 
used in the EFA example. Recall that we had deter- 
mined the range of existence of  each of the three com- 
ponents present in the data. Thus, as the initial 
concentration profiles, we will use the forward singular 
values from the EFA with the first singular value re-set 
to zero after sample 60, where we assume (from consid- 
eration of the backward EFA) the associated compo- 
nent disappeared. 

The resulting spectral estimates and concentration pro- 
files are compared with the known values in Figure 18. In 
this problem the intensity ambiguity exists so the concen- 
tration profiles and spectra have been scaled for compar- 
ison to the actual values. Note that the spectra and 
concentration profiles have been recovered almost exactly 
from the original data, with the exception of a small error 
on the estimate of the spectra of  the 'unwanted byprod- 
uct' analyte present in the lowest concentration. Using 
MCR, we have now detected the presence of the byprod- 
uct and obtained an estimate of its pure component spec- 
tra. This gives us the opportunity to search the spectra 
library for the true identity of the compound.  

To the author 's  knowledge, no applications of  MCR 
have been published where fault detection and real-time 
process monitoring was the goal. The existing literature 
consists of  studies that were done 'after the fact' when 
it was known that contaminant  species had developed 
in process runs and their identity was not known. How- 
ever, it is easy to see how M C R  and EFA might be 
implemented on-line in a batch process. Such a tech- 
nique would allow one to detect and fingerprint the 
unwanted analytes in a reacting system. 

for any arbitrary constant a. If, however, the concen- 
tration of a component  is known at any point within 
the data, it is possible to resolve the ambiguity for that 
particular component.  

If  additional information is known about  the prob- 
lem, it is possible to incorporate it into the iteration 
procedure as a constraint. For  instance, it is often 
assumed that the concentration profiles are unimodal. 
In other cases, closure or some known stoichiometry 
may be used. When additional known (correct) con- 
straints are used, the quality of  the solution obtained 
generally improves. It is also possible to combine data 
sets from different runs of  the process under considera- 
tion simply by forming the augmented matrices as fol- 
lows: [x!] 

X = = • A = CA (27) 

x 

where X~ t o  XNp are the ordered data from NP individ- 
ual process runs and C~ to CNp are the associated con- 
centration profiles from the runs. Combining data from 
different runs may also contribute to the stability of  the 
solutions obtained. 

M u l t i v a r i a t e  r e g r e s s i o n  m o d e l i n g  

In this section we discuss several regression methods 
that have found utility for process monitoring and fault 
detection. As we shall see, these methods can be used in 
a number of  different ways depending upon the appli- 
cations. 
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Figure 18 Comparison of actual concentration profiles and pure 
components spectra and estimates (+s) from MCR 
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Inverse Least Squares 

Inverse Least Squares (ILS), also known as Multiple 
Linear Regression (MLR) or Ordinary Least Squares 
(OLS) can be useful for predicting properties of a sys- 
tem based on variables which are only indirectly related 
to the property. 3z ILS assumes that a regression vector 
b can be used to determine a property of the system y 
from the measured variables x (a row vector such as a 
spectra or collection of process variables). Thus, the ILS 
model is 

x b : y (28)  

The regression vector b must be determined using a col- 
lection of measurements x and the known values of the 
property of  interest, y. Thus, b is estimated from 

b = X+y (29) 

where X ÷ is the pseudo inverse of  X. There are many 
ways to determine a pseudo inverse, but perhaps the 
most obvious is Multiple Linear Regression (MLR, also 
known as ordinary least squares). In this case, X + is 
defined by 

X ÷ = (XTX)-IX T (30) 

Unfortunately, this approach often fails in practice 
because of the collinearity of  X, e.g. some columns of X 
(variables) are linear combinations of  other columns, or 
because X contains fewer samples than variables (few 
rows than columns). For  example, the spectroscopy cal- 
ibration problem is extremely ill-conditioned due to a 
high degree of correlation between absorbances at 
nearby wavelengths. Similarly, in applications where 
one would like to predict product  properties based on 
process variables, the process variables are often highly 
correlated. It is also typical that there are fewer samples 
available than the number of wavelengths considered. 

When Equation 30 is used with systems that produce 
nearly collinear data, the solution for b is unstable, i.e. 
small perturbations in the original data, possibly due to 
noise or experimental error, cause the method to pro- 
duce wildly different results. While the calibrations may 
fit the data, they are typically not useful for predicting 
properties of  new samples. 

Principal Components Regression 

Principal Components Regression (PCR) is one way to 
deal with the problem of ill-conditioned matrices. 32 
Instead of  regressing the system properties (e.g. concen- 
trations) on the original measured variables (e.g. spec- 
tra), the properties are regressed on the principal 
component scores of the measured variables (which are 
orthogonal and, therefore, well conditioned). Thus, X + 
is estimated as 

X" = P (TTT) -1 T T (31) 

As in PCA, the number of principal components to 
retain in the model must be determined. In our case, the 
purpose of the regression model is to predict properties 
of interest for new samples. Thus, we would like to 
determine the number of PCs that optimizes the predic- 
tive ability of the PCR model. This is typically done by 
cross-validation, a procedure where the available data is 
split between training and test sets. The prediction 
residual error on the test samples is determined as a 
function of the number of PCs retained in the regression 
model formed with the test data. The procedure is usu- 
ally repeated several times, with each sample in the orig- 
inal data set being part of the test set at least once. The 
total prediction error over all test sets as a function of 
the number of PCs is then used to determine the opti- 
mum number of PCs, i.e. the number of PCs which pro- 
duces minimum prediction error. If all of  the PCs are 
retained in the model, the result is identical to that for 
MLR (at least in the case of more samples than vari- 
ables). In some sense, it can be seen that the PCR model 
'converges' to the MLR model as PCs are added. 

Partial Least Squares 

Partial Least Squares (PLS) regression 33-36 is related to 
both PCR and MLR and can be thought of occupying 
a middle ground between them. PCR finds factors that 
capture the greatest amount  of variance in the predictor 
variables, e.g. spectra or the temperatures in the SFCM 
example. MLR seeks to find a single factor that best 
correlates predictor variables with predicted variables, 
e.g. concentrations or level. PLS attempts to find factors 
which do both, i.e. capture variance and achieve corre- 
lation. We commonly say that PLS attempts to maxi- 
mize covariance. 

In PLS, the scaled and mean-centered X and Y matri- 
ces are decomposed as: 

A 

X = TP  + + r = ~ t , , p f  + E (32) 
a=l  

A 

Y = UQ T + F  = ~u, ,q  T. +F  (33) 
a=l  

Note that here we are allowing for multivariate Y. One 
of the unique features of PLS is that it can be used to 
form models relating more than one predicted variable 
to many predictor variables. The latent vectors t~ are 
computed from the data for each PLS dimension (a = 1, 
2 . . . . .  A) such that the linear combination of the X vari- 
ables defined by the latent variable t o = wSx and the lin- 
ear combination of the Y variables defined by the latent 
variable u o = q J y  maximizes the covariance between X 
and Y that is explained at each dimension, i.e. as latent 
variables are added. 

There are several ways to calculate PLS model para- 
meters (see for example the work of de Jong 199337), 
however, perhaps the most instructive method is known 
as NIPALS for Non-iterative Partial Least Squares. 
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NIPALS calculates scores and loadings (similar to those 
used in PCR) and an additional set of vectors known as 
weights, W. The addition of weights is required to 
maintain orthogonal scores. Unlike PCR and MLR, the 
NIPALS algorithm for PLS also works when there is 
more than one predicted variable, Y, and therefore 
scores U and loadings Q are also calculated for the Y- 
block. A vector of  'inner-relationship' coefficients, b, 
which relates the X- and Y-block scores, must also be 
calculated. Using NIPALS the scores, weights, loadings 
and inner-coefficients are calculated sequentially as 
shown below. 

The PLS decomposition is started by selecting one 
column of Y, yj, as the starting estimate for u~ (usually 
the column of Y with greatest variance is chosen). Of 
course in the case of  univariate y, Ul = y. Starting in the 
X data block: 

XTul 

w~ = II XTul H 
(34) 

t I = X w  I ( 3 5 )  

In the y data: 

ulTt' (36) 
qt = II uTtl 11 

ul  = Y q l  ( 3 7 )  

Check for convergence by comparing t~ in Equation 35 
with the one from the previous iteration. If they are 
equal within rounding error, proceed to Equation 38. If 
they are not return to Equation 34 and use the u~ from 
Equation 37. If the Y-block is univariate, Equations 36 
and 37 can be omitted, set q~ = I, and no iteration is 
required. 

Calculate the X data block loadings and rescale the 
scores and weight accordingly: 

XTtl 

P~ Irtlrt~ II (38)  

Plold 
p ~ w  - - -  0 9 )  

II Plold II 

tlnew = t,o,d IIPlo,dll (40) 

Wlnew ~--~ Wlold IlPtoldll (41) 

Find the regression coefficient b for the inner relation: 

- uTt' (42) 
b~ tTtl 

After the scores and loadings have been calculated for 

the first factor (commonly called a latent variable [LV] 
in PLS), the X- and Y-block residuals are calculated as 
follows: 

El = X - tlp~ ~r (43) 

F 1 = Y -  blulql v (44) 

The entire procedure is now repeated for the next latent 
variable starting from Equation 34. X and Y are 
replaced with there residuals E~ and F~, respectively, 
and all subscripts are incremented by 1. 

It can be shown that PLS forms the matrix inverse 
defined by: 

X + = W(pTW)-,(TTT) -, T T (45) 

where the W, P and T are as calculated above. Note 
that the scores and loadings calculated in PLS are not 
the same as those calculated in PCA and PCR. They 
can be thought of, however, as PCA scores and load- 
ings that have been rotated to be more relevant for pre- 
dicting y. Also, as in PCR, the PLS model converges to 
the MLR solution if all latent variables are included. 

If the PLS algorithm does not appear transparent, do 
not despair. The important thing to remember is that 
PLS attempts to find factors or LVs which are corre- 
lated with Y while describing a large amount  of the 
variation in X. This is in contrast to PCR, where the 
factors (in this case PCs) are selected solely on the 
amount  of variation they explain in X. It is for this rea- 
son that PLS has found great utility in process moni- 
toring applications. 

An application of PCR and PLS 

As noted in the introduction to this section, the possible 
applications of 'calibration' methods go beyond the 
spectral calibration problem. Therefore, as an example 
of the application of PCR and PLS, we will now 
develop a regression model that relates the temperatures 
measured in the SFCM (which take the place of spectra 
in the calibration problem) to the level of the molten 
glass (which takes the place of concentration). The glass 
level for the period of temperatures shown in Figure 2 is 
shown in Figure 19. As noted previously, the measured 
temperatures rise and fall with the glass level, which is 
a controlled variable. A model relating temperatures to 
level would serve as a backup and/or fault detection sys- 
tem for the pneumatic level measuring instrument. 

In our example, there are 300 samples available for 
the calibration. (We will also use all 20 of the available 
temperature measurements, rather than just the subset 
of 16 used in the PCA example.) We must first decide 
how to split the available data for cross-validation to 
determine the optimum number of  PCs to retain in the 
PCR, or similarly, LVs in the PLS model. When many 
training samples are available, a good rule of thumb is 
to use the square root of  the number of samples for 
each test set and the number of test sets. Given 300 
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Figure 19 SFCM molten glass level 

samples this would lead to 17.32 samples per test set 
and 17.32 test sets. In our case, it is more convenient to 
use 10 training sets of 30 samples each. 

We must also decide how to select the test sets from 
the data. One possibility would be to form each test set 
using every 10 th point of the data, each subset starting 
from sample 1, 2, 3, etc. When dealing with data from 
a dynamic system, however, this is usually not a good 
choice because noise in the system is usually not com- 
pletely random. Instead, noise is generally serially cor- 
related, which means that the amount  of variation due 
to noise on the n th point is correlated to the amount  of 
noise on the n+l th point. Thus, if the test sets were cho- 
sen using every 10 tla point, noise on the test data would 
be highly correlated with noise in the training data, and 
the result would be a model that fit much of  the system 
noise. Instead, when dealing with time series data pro- 
duced by a dynamic system, it is better to choose con- 
tiguous blocks of data for the test sets. Thus, the first 
test set will be samples 1-30, the second will be samples 
31-60 and so on. 

Figures 20 and 21 show results of  the cross-validation 
procedure on the temperature/level data for the PCR 
and PLS models, respectively. Note how the prediction 
error or PRESS (prediction residual error sum of  
squares) is a minimum at 11 PCs for the PCR model. 
We might choose 11 PCs for construction of the final 
model using all 300 training samples, however, experi- 
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Figure 20 Prediction error (PRESS) as a function of number  of  PCs 
in PCR model for SFCM data  
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Figure 21 Prediction error (PRESS) as a function of  number  of  LVs 
in PLS model for SFCM data 

ence has shown that in cases like this a better choice 
would be to select the first minimum with PRESS close 
to the global minimum. Thus, we would choose six PCs 
for the model. Note, however, that some PCs do not 
contribute to the prediction error in a positive way. 
When PCs 2, 4 and 5 are added, the PRESS actually 
gets worse. This suggests that these factors are not rele- 
vant for prediction of the level. 

Figure 21 shows the PRESS versus number of LVs 
for the PLS model. Note how the PRESS goes through 
a minimum at five LVs. as opposed to the 11 PCs used 
in the PCR model, and does not have many local min- 
ima. This is typical of  the behavior of PLS relative to 
PCR. Because PLS attempts to find factors that 
describe variance (like PCR) and achieve correlation 
(like MLR), PLS models tend to 'converge' to the MLR 
solution faster than PCR models. For  the same number 
of factors, they also tend to capture more of the rele- 
vant information in X, which results in minimum 
PRESS at a smaller number of factors and with fewer 
irrelevant factors. In practice, we would choose four 
LVs for the model because the change in the PRESS 
from four to five LVs does not appear significant (it is 
less than 2%). 

As mentioned above, there are often factors in PCR 
models which do not contribute positively to the pre- 
dictive ability of the model, e.g. factors 2, 4, 5, 7 and 10 
in our PCR example, where the PRESS goes up (see 
Figure 20). This happens in PCR because the factors 
(the PCs) are chosen without consideration of how they 
relate to the predicted variable. This happens much less 
frequently in PLS, because the factors (the latent vari- 
ables) are chosen with regard to how correlated the fac- 
tor scores are to the predicted variable. It is possible to 
form the PCR model leaving out these factors, simply 
by deleting the appropriate columns from the P and T 
matrices in Equation 31. 

We can compare the regression vectors calculated by 
PLS and PCR with the regression vector calculated by 
MLR, as shown in Figure 22. It can be seen that the 
MLR regression coefficients vary considerably switch- 
ing from positive to negative and back several times. 
This 'ringing' in the coefficients is typical of models pro- 
duced by MLR when the problem is ill-conditioned. 
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Figure 22 Compar ison of regression coefficients from MLR,  PCR 
and PLS models for SFCM level 

Note how the PLS and PCR models are much 
smoother.  In fact, the PLS and PCR models make more 
'sense' from a physical standpoint. Because of the close 
proximity of  the temperature sensors in this system, we 
would not expect the relationship between adjacent sen- 
sors and the level to be of opposite signs, as they are in 
the M L R  model. 

Ridge rcwcssion 

Ridge regression is another technique for dealing with 
ill-conditioned data. Ridge regression gets its name 
because a constant is added to the 'ridge' of  the covari- 
ance matrix in the process of forming the pseudo 
inverse: 

X-  = ( X r X  + I 0 ) I X r  (46) 

The addition of the constant ® to the ridge has the 
effect of stabilizing the values of  the coefficients deter- 
mined from the regression. It also has the effect of 
shrinking the coefficients. It has been shown -~ that the 
regression vector calculated from ridge regression is the 
least squares solution subject to the constraint that the 
vector is confined to a sphere centered around the ori- 
gin. Thus, in some sense, RR assumes that the regres- 
sion coefficients are more likely to be small (near zero) 
than large. Note that it is also possible to impose a non- 
spherical constraint on the regression vector by using a 
specific diagonal matrix instead of the identity matrix in 
Equation 46. This is often useful when one knows that 
certain coefficients are more likely to be close to zero 
than others. This is the case with certain types of 
dynamic models, as will be shown below. 

Ridge regression is also used quite often when one is 
concerned with the values of  the regression coefficients 
themselves, rather than in prediction. If one can derive 
needed mt\~rmation from the coefficients themselves, 
RR may be an appropriate  choice. The trick in ridge 
regression is to determine the opt imum value of ® for 
developing a predictive model. A common statistical 
method was outlined by Hoerl et dl. ~9 It is also possible 
to determine the opt imum value through cross-valida- 
tion. 

As an example of  the use of ridge regression, we will 
now revisit the SFCM data used in the examples of  
PCR and PLS. The regression coefficients are shown as 
a function of the ridge parameter  in F~ure 23. Note 
how the values shrink as the value of ® is increased. 
The value of  the ridge parameter  using the method of 
Hoerl and Kennard is 0.0074, while the value deter- 
mined using the cross-validation procedure outlined 
above is 0.0076. The regression coefficients are com- 
pared with t h o s e  determined from MLR in Figure 24. 
Note how the coefficients have been shrunk in RR as 
compared to MLR.  

Comparison o/  linear models oil S FCM e.vamp/e &tta 

Of course, the real reason for forming the regression 
models is to make predictions of the SFCM level given 
the temperatures in the event of a failure of  the level 
instrument or as a check on the performance of the 
instrument. Thus, the best test of the models is their 
ability to predict the level given new temperature mea- 
surements. 

Before comparing the predictive ability of the models, 
it is useful to introduce several measures of  a model's fit 
to the data and predictive power. In all of the measures 
considered, we are attempting to estimate the "average" 
deviation of the model from the data. The root-mean- 
square error of calibration (RMSEC) tells us about  the 
fit of the model to the calibration data. It is defined as: 

I~](#,- y, )_~ 
RMSEC = ~: '< tl- (47) 

where the v, are the values of the predicted variable 
when all samples are included in the model formation 
and n is the number  of  calibration samples. RMSEC is 
a measure of how well the model fits the data. 

This is in contrast to the root-mean-square error of  
cross-validation (RMSECV) which is a measure of a 
model's ability to predict new samples. The RMSECV 
is defined as in Equation 47, except the v, are prediction 
for samples not included in the model formulation. 
RMSECV is related to the PRESS value for the number  
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Figure 23 Value of regression coefficients as a function of the ridge 
parameter  (-) 
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F i g u r e  24  Regression coefficients from M L R  and RR models on 
SFCM example 

of PCs or LVs included in the model, i.e. 

RMSECV k _- ~IPRESSk 
V /l 

(48) 

where PRESS, is the sum of squares prediction error for 
the model which includes k factors. Of course, the exact 
value of RMSECV depends not only on k, but on how 
the test sets were formed. It is also common to calculate 
PRESS and thus RMSECV, for a leave one out cross- 
validation, i.e. where each sample is left out of the 
model formulation and predicted once. 

It is also possible to calculate a root-mean-square 
error of prediction (RMSEP) when the model is applied 
to new data provided that the reference values for the 
new data are known. RMSEP is calculated exactly as in 
Equation 38 except that the estimates ~, are based on a 
previously developed model, not one in which the sam- 
ples to be 'predicted' are included in the model building. 

The MLR, PCR, PLS and RR models developed for 
the SFCM example can now be compared using the 
measures just introduced. This information is summa- 
rized in Table 4. A new data set of 200 samples was 
used for the calculation of RMSEP. The actual level is 
compared with the prediction form PLS in Figure 25. 

Note how the MLR model shows the smallest value 
for RMSEC, the error of calibration. This indicates 
that, as expected, the MLR model 'fits' the data best. 

Note,  however, from the RMSECV that the M L R  
does not predict the best, even for samples within the 
original calibration data. Here the 'best' model is PLS. 
This is also true for the RMSECV for leave-one-out 
cross-validation (RMSECV-LOO). Note that the num- 
bers for RMSECV-LOO are all lower than those for 
RMSECV. This is expected, because the ability to pre- 
dict improves as the number of samples included in the 
model formulation is increased. 

Table 4 Compar ison of  MLR,  PCr, PLS and RR models used for 
SFCM example 

M L R  PCR PLS RR 

RM SEC .0991 .1059 .1034 .0996 
RMSECV . 1122 . 1108 . 1098 . 1046 
RMSECV .1062 .1079 .1045 .1067 

LOO 
RMSEP .1496 .1366 .1396 .1471 
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F i g u r e  25 Compar ison of actual SFCM level and predictions from 
PLS model 

For the prediction on new samples the PCR model 
outperforms all other models. The RMSEP for the 
MLR model is ~10% higher than the prediction error 
for the PCR model. The PLS model prediction error is 
-2% higher than the PCR model, while the RR model 
RMSEP is -8% higher. While these differences are 
small, they illustrate the point that when the data has a 
great deal of redundancy between variables, methods 
that take advantage of the structure generally outper- 
form those that don't. 

It should be evident from the comparison of models 
that fit and prediction are entirely different aspects of a 
model's performance. If prediction is the goal, a model 
should be built with this criteria in mind. The calcula- 
tion of PRESS from a cross-validation procedure is one 
way to measure a collection of model's predictive abili- 
ties. Also, the robustness of  the models in the face of  
minor changes to the system must also be considered. 
PLS and PCR models are known to be relatively robust 
compared to MLR. 

Using the PLS predictions, scores and residuals Jbr 
process monitoring 

Up to this point the predictive aspects of PLS models 
have been emphasized. However, this is not the only 
way in which PLS models may be applied. By virtue of 
its construction, the PLS model describes the variation 
in X that is predictive for Y. Thus, it is logical to use the 
PLS weights in a manner analogous to use of the load- 
ings in PCA, i.e. to determine if the structure of the X 
data has changed in a significant way. All of the statis- 
tical tests used for PCA may, in fact, be used with little 
modification for PLS. For example, one many monitor 
the PLS X block scores. This scheme is particularly use- 
ful as it monitors the variations in X which are known 
to be related to the properties to be predicted, Y. Resid- 
ual Q and 7: can also be developed, as will be shown. 

Going back to our SFCM example, we can now use 
the PLS model for predicting level to detect a failure of 
the level sensor. Using the difference between the actual 
and predicted levels from the calibration data it is pos- 
sible to set a limit on the expected size of this residual 
in practice. Review of the residuals showed them to be 
approximately normally distributed (not shown) and so 
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a limit of  2.33 standard deviations of  the prediction 
error was used to establish a 99% limit. Figure 26 shows 
the detection of a simulated failure. Here the residuals 
from the level prediction are monitored. A ramped bias 
is added starting at sample 20 which goes from 0. to 0.6 
inches over the range. Note  how the residuals go out- 
side the 99'!/,, limits detecting the failure of  the level sen- 
sor. 

The same model can also be used to detect the ther- 
mocouple failure shown previously using the Q statistic 
and/or the T e statistic. Figure 27 shows a plot of 7: ver- 
sus Q for the same samples shown in Figure 6. As in the 
previous example, the individual residuals could be used 
to assign the failure to thermocouple number  5 (not 
shown). 

The PLS model can also be used to detect a process 
upset as shown in Figure 28. Here the 7: indicates a dis- 
turbance at samples 50-70. T: alone, however, does not 
provide much information regarding the root cause of 
the disturbance. The contribution of the individual vari- 
ables to T: is shown in Figure 29. This is calculated by 
multiplying the normalized scores used in the calcula- 
tion of 7 ~ by the loadings matrix. Figure 29 shows the 
contributions to 7 e for samples 51-60 as a bar chart. 
The pattern of  variables contributing to T e suggests a 
cold-cap upset, a condition where the cold-cap atop the 
molten glass breaks and lets liquid slurry come into 
direct contact with the glass. The pattern of  widely dif- 
ferent contributions on variables 15-20 suggests that the 
upset was primarily confined to the right side of  the 
melter. 

PLS Jor regression adjusted variables 

It has been demonstrated 4°m that PCA-like residuals 
can be generated with PLS, and that the detection lim- 
its for process faults and sensor failures are often much 
improved over PCA monitoring. This requires that PLS 
models be obtained that relate each process output to 
the remaining outputs in the system. Thus, for a system 
with n outputs, n PLS models would be required. The 
final regression vectors from the n PLS models can be 
formed into a single matrix, with each model being a 
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column vector. Because each of the variables does not 
contribute to its own prediction, the resulting prediction 
matrix, Mp has zeros on the diagonal. Thus, the PLS 
'filtered' estimate of  a data matrix X can be obtained by 
simple matrix multiplication 

= XMp (49) 

The X in Equation 49 have also been referred to as 
'regression adjusted' variables. A residuals matrix. DpL ~, 

can be calculated from 
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Dpl~ = X - X = X - X M p  = X ( l - M p )  = XRpt~ (50) 

where R p l  s is the PLS equivalent of the I -PP  T matrix in 
PCA. Once the Rp~ matrix has been calculated it can be 
used with new data to produce PCA-like residuals. 
These residuals can be used with statistical tests to 
detect any changes to the process or its sensors. It  has 
been shown that the use of  predictive ability as the basis 
for model selection makes PLS more sensitive to 
process upsets than PCA. The major  drawback of PLS 
in this application is that it produces residuals that are 
autocorrelated, due to mapping of state information 
into the residuals. The autocorrelation in the residuals 
can change when the autocorrelation in the states 
changes, invalidating the calculated control limits. 

Multi-block PLS  

Multi-block data anlaysis methods have their origins in 
path analysis and path modeling in the fields of  sociol- 
ogy and econometrics. Multivariate projection methods 
for analyzing such block data are largely due to 
Herman Wold, 42 Bruce KowalskP ~ and Svante Wold. 43 
In this article we will use a variation of the multi-block 
or hierarchical PLS algorithms of Wold et al. 44 and 
Wangen and KowalskP s The basic concepts will be 
illustrated here using the case shown in Figure 30 
where there is a single Y block and two X blocks. 
The multi-block PLS decomposition proceeds as 
follows: 

(l) Start by selecting one column of Y, Y/, as the start- 
ing estimate for u. 

(2) Perform part  of a PLS round on each of the blocks 
X~ and Xz to get (Wl, t~) and (w2, t:) as in Equations 
34-41 above. 

L h 

x2 

w I • 
p l  T i / 

i ®  1 / 
i . . . .  
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Figure 30 Multi-block PLS algorithm 

(3) Collect all the score vector t l ,  t 2 in the consensus 
matrix T, 

(4) Make one round of PLS with T as X (Equations 
34-41 above) to get a loading vector v and a score 
vector tc for the T matrix, as well as a loading vec- 
tor q and a new score vector u for the Y matrix. 

(5) Return to step 2 and iterate until convergence of u. 
(6) Compute  the loadings Pl = X/Ttl/tlTtl and P: = 

X2t2/tSt 2 for the XL and X, matrices. 
(7) Compute  the residual matrices E l = X 1 - tLp~T; E~ 

: X 2 - t:p2 T, F = Y - tcq T. 
(8) Calculate the next set of latent vectors by replacing 

X~, X: and Y by their residual matrices E~, E 2, and 
F, and repeating from step 1. 

Although there are many possible variations of multi- 
block PLS algorithms, the one illustrated here leads to 
loading vectors w and score vectors t for each block that 
are orthogonal to one another, but the overall score 
vectors t~ are not orthogonal to one another, This fol- 
lows from the computat ion of the residual matrix E~ 
and E, in step 7, the loading vectors and orthogonal 
latent vectors for each block X. 

Multi-block PLS is appropriate  when the process of 
interest can be broken down into logical blocks of vari- 
ables. 46 An example of this might be different zones in 
aa continuous reactor or measurements made on several 
different feed stocks that are blended together to form a 
final product. 

Multi-way PLS  

Multi-way PLS 4749 is useful when one wants to relate a 
three-way array of predictor variables, such as that 
shown in Figure 8, to a matrix of  predicted variables. 
The development of a multi-way PLS model is very sim- 
ilar to the development of  a multiway PCA model. The 
array of predictor variables X is unfolded as in F(~ure 9 
to form a matrix X. PLS for multivariate Y is then used 
to form a model relating X to Y. 

Multi-way PLS is particularly useful for modeling 
batch systems. Generally, the end point quality parame- 
ters compose Y and are predicted using the history of 
the process variables. Monitoring can be done during 
the batch by using the missing data versions of PLS. 

Applications o f  multi-block and multi-way PLS  

Multi-way and multi-block PLS have been demon- 
strated several times using both simulated and actual 
process data. In a very early application of multi-block 
PLS, Frank et al. considered the manufacture of 3M 
adhesive tape samples. Improvements  to the quality 
control of  the adhesives was reported. Nomikos  and 
MacGregor  have reported using multi-way PLS in sim- 
ulated monitoring of a styrene butadiene batch reactor. 
MacGregor  et al. 46 reported the use of  multiblock PLS 
on a simulated low density polyethylene process. Addi- 
tional applications of  MPCA include that of 
Kosanovich et al? ° a proprietary process. 
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Conclusions 

This paper has provided a summary of many of the 
concepts and methods of the chemometrics approach to 
process monitoring and fault detection. These methods 
take full advantage of the multivariate nature of the 
data. Because of this, the methods are often much more 
powerful techniques for detecting changes in a system 
than methods that look at variables one at a time. 

Chemometric methods provide a rich tool set for 
process monitoring and fault detection applications 
because the models: 

• handle large numbers of correlated variables very 
well 

• take adxantage of structure in data 
• provide data compression 
• provide a great deal of diagnostic information 

Furthermore, the development of models is typically 
straightforward because the models are deterministic 
(same model each time for a given data set) and the com- 
putational requirements relatively low. This generally 
allows the model developer to participate directly and in 
real time with the model buillding process, which often 
leads to deeper process insight. Finally, model develop- 
ment requires only examples of desired operation, as 
opposed to a full theoretical model of the process. 

The methods considered here can be applied in a 
number of ways depending upon the particular objec- 
tive at hand. The general procedure for their application 
is always the same, however. A model which describes 
the desired behavior of the system is identified using 
data from the actual process. Future process data is 
compared with the models 1o determine if a change has 
occurred in the system. 

If recent trends continue, we expect to see more appli- 
cations of PCA and PLS in the process environment. 
Much work remains to be done on the multi-way and 
multi-block methods, and this is a very active research 
area. Other methods that take explicit account of the 
ordered nature of the data are also being investigated. 
Applications of multi-way methods to real process are 
already beginning, however, and we expect this trend to 
continue. 
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