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Abstract

Virtually all modern process plants include computerized information systems that centralize, present
and alarm sensor data. Yet there remains tremendous scope for improving operator support by adopting
computer-based fault detection, identification and supervision systems to satisfy incentives for human
safety, environmental safeguards, equipment protection and product quality. This paper reviews
requirements, recent progress and remaining challenges in detecting, identifying and correcting faults in
process plants, and samples a number of architectures, tools, and industrial apphcanons
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Introductmn

Every mdustnal process has thc potential of deviating
outside its normal and intended range of behavior. Unless

" contained, process deviations may have a serious impact on

process economy, safety, product quality and pollution
level. Proper mechanisms for preventing, detecting,
diagnosing and correcting abnormal process behavior
should therefore be an important part of the supervisory
control system of any plant. While this is widely
recognized, in practice the diagnosis and response tasks are
too often characterized by manual, ill-documented or ad hoc
operator procedures. There is tremendous scope for
improvement by adopting computer-based fault diagnosis
and advisory systems. The direct benefits to be gained
include:

*  Increased safety and reduced costs by vigilant
monitoring of multiple safety and economic
parameters;

¢ Detreases in emissions, material and energy
waste associated with excursions from normal
operation,;
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*  Increased product quality by rapid detection and
correction of incipient disturbances; .

* Reductions in human emor due to mis-
assessment of the process condition or failure
to follow standard procedures;

* Increased plant lifetime by reduction of the
duration and severity of out-of-control
episodes.

These incentives have stimulated a large number of
academic and industrial activities over the last .decade.
Perusal of the literature reveals a broad, almost bewildering
array of proposed diagnostic approaches, spawned from
artificial intelligence (expert systems, neural 'networks,
qualitative simulation, case-based reasoning), probability
and statistics (statistical process control, chemometrics,
Bayesian networks), systems theory (estimators, observers,
analytical redundancy), and -safety and reliability (fault
trees, causal reasoning). A growing number of industrial
systems are also represented, each displaying a unique
architecture, knowledge representation, solution algorithm,

-and human-machine interaction, Meanwhile, the process



industries have not widely adopted any diagnostic technique
(with the possible exception of SPC for fault detection),
and there are few standard vendor-supported tools available
to support off-the-shelf solutions. The prospects for this
dynamic field are indeed difficult to discem.

In this paper, we examine the challenges underlying
the design of diagnostic systems, beginning with a
perspective on the role and functions of diagnosis systems,
moving to design considerations, followed by a review of
- diagnostic methodologies, and concluding with a sampling
of architectures, tools and environments, industrial
applications, and future challenges.

" Role of Monitoring and Diagnbstic Systems

Diagnostic systems fit into the hierarchy of plant
management at the execution supervision layer, above
regulatory control layer, and below the process planning
layer (Fig. 1). The general goal at this level is to assure
" the success of the planned operations by monitoring the
performance of the system and its regulatory controls. At
minimum this implies kéeping operators, managers, and
maintenance personnel better informed about what is going
on in the process. The design and implementation of
computerized fault diagnosis advisors must be driven by
the needs of these user groups.
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Figure 1. Plant management hierarchy.

The functions and information flow in an on-line
diagnostic system are shown in Fig. 2. The diagram
assumes a process monitored and controlled by a SCADA
system, and supervised by an operator or operational team.
Because many factors can influence the precise
requirements, diagnostic applications may involve only
selected elements of these functionalities, and additional
non-diagnostic functions may play an important role. Nor
do these functions necessarily occur sequentiaily in the
order shown; for example, isolation and identification are
not necessarily required for prognosis and compensation.
The following functions may be included:

+  Feature Extraction. The diagnostic process
starts from process data and alarms supplied by
a SCADA system, manual inputs from the
operator, and information from the plant
database (such as laboratory results). Normally
it is desirable to process this data to extract
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features relevant to the fault detection and
diagnosis tasks, rather than relying on raw data
alone.

»  Prediction: Ideally, one would like to prevent
faults before they occur. This implies a
predictive ability that might be realized
through monitoring cumulative wear and
shocks, composition analysis of lubrication
fluids, extrapolation of real-time trends, etc.

‘e Detection: Detecting that a fault has actually
occuired is not always obvious, due to slow
induction or compensation by the control
system. Early detection may provide
invaluable waming on emerging problems,
thus enabling the operator to issue actions
that avoid serious process upsets.

o Isolation: In order to handle the fault, it is
necessary to narrow the location of origin. if
the physical unit or functional subsystem that
is the origin of the fault can be isolated, this ‘
may be sufficient for error handiing.

«  Identification: This step involves determining
the identity of the fault, usually from a pre-
enumerated set of possibilities. Identification
may imply one or more of the following:

(a) Classification: Determining the type of
fault (e.g. a ‘leak), without necessarily
providing other details (extent, time of
occurrence, precise location, root cause, etc J-
(b) Estimation: Determining the extent of the
fault and other parameter values quantifying
the fault, ‘

(c) Diagnosis: Qetermining the undexlying
cause for the fault {e.g. corrosion as the cause

i of a leak).

¢  Prognosis: When an abnormal event is in
progress, we would like to know the potential
outcome of the event and the time window
available for affecting that outcome.

.+ Compensation: In many cases, the first-level
response to a fault is to mitigate its negative
consequence, for example, by starting a back-
up unit.

e Correction: Finally, the system may be
corrected by repairing or replacing the faulted
component or ingredient. The fault handling
functions may issue advice to the operator, or
take direct actions via the SCADA system.

by o

This diversity of functions implies that there cannot be an
all-encompassing approach to diagnosis. As is clear from
the literature on the subject, the contributions of Al
statistics and systems theory all play important roles in
solving different aspects of the problem. While individual
elements of the problem may be fairly well understood,
integrating these elements into an overall operating system
presents significant engineering challenges.
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| rault, Design decisions conceming the technical scope and
- ‘de““i'cat'c’" ~a approach to the diagnostic system include (see
Fault Prognostication Stephanopoulos and Han, 1994):
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dynamic, linear, nonlinear, deterministic,
stochastic, etc.);

The gources of data to consider, including on-
line measurements and possibly = off-line
manual measurements and laboratory analyses;
»  Featres to be extracted and examined in the
data (signal properties, egquation residuals,
parameter estimates, dimensional projections,
symbolic or Boolean discretizations, etc.);

The type of fauly detection tests to be applied
(statistical,  logical, univariate or
multivariate);

Figure 2. Functions and information flow in
diagnostic systems. .

Considerations in Diagnostic System Design

In this section, we discuss requirements and raise
issues to be considered in the design of a diagnostic
system. Each diagnostic function in Fig. 2 is characterized .
by information flows to the operator, Early in the design
and planning of a diagnostic system, there are several

strategic decisions that must be made regarding these

information flows. These include:

+  Which diagnostic functions should be
performed autonomously . by the system,
which on an on-demand basis, and which
should be left to the users?

« Should the system or the uvser initiate and
guide the diagnostic reasoning process? Under
what circumstances should manual input be
depended upon?

e  What information should the system display
on a continuous basis, and what information
should be accessible on demand?

»  What strategy should be used to prioritize and
control the flow of information from the
system to the user?

« How should status information be presented
so the user always knows the status of the
system at a glance? How should the system
focus user attention?

« How should the system alert the operatoss
when a deviation is detected, for example, via
text, color coding, sound, animation, or a
combination thereof?

+  What should the end-user screens look like
with rtespect to color, layout, information
density, etc.? How should the user navigate
between the screens? What measures should be
taken to make sure important information is
not missed if the user is “on the wrong page?”

.« The description of fault behavior used to '
determine fault identity (algebraic or
differential  -equations, order-of-magnitude
relationships, causal graphs, probabilistic
models, nonlinear mappings, rules, etc.);

« The algorithm for @applying fault description
to determine the fault identity.

Of course, the technical approach cannot be considered
independent of the type of knowledge that is available to
support it, or that its creators are willing to invest the time
and effort to create. Possible knowledge sources for
developing the diagnostic system include:

+  Process and instrumentation diagrams;

«  Equipment and material specifications;

»  Operational specifications, including standard
operating plans, alarm limits, and the like;

+  Design and operability analyses such as fault .
trees, HAZOP studies, etc.;

«  Analytical models, for either normal and/or
fanlty operations;

«  Historical data, possibly including both
normal and abnormal data;

«  Knowledge of operating personnel.

The quality and extent of these knowledge resources will
guide the technical approach and may critically impede ot
facilitate the development and deployment of the diagnostic
system.

From an systems integration and software engineering
viewpoints, additional requirements may include:



. Interfaces with the plant information systems
for accessing real-time, historical and off-line
laboratory data, and existing reporting and
documentation systems;

« Utilization of a common database of
information on plant layout, standard
operating procedures, operating ranges, hazard
and operability study results, etc.;

¢« Recording and archiving of data, conclusions,
and user inputs; :

+ Knowledge representation in a form that is
transparent, verifiable, and easy to maintain;

e Use of algorithms that are scaleable in terms
of computer power, memory, modeling etfort,
etc., and capable of operating on the same
time scale of the distrbance.

Fault Detectioﬁ, Iselation and Identification

Of the monitoring and diagnosis functions defined
above, the core problems of - fault detection and
identification (FDI) have received the most research
attention. Associated problems such as pricritization of
symptomatic information, fault prediction, explanation,
and response are generally regarded as highly process-
specific and resistant to generalized formalization and
solution, although there seems to be no fundamental
justification for this perception. In this section, diagnosis
is described as a three-stage process involving fault
detection, isolation and identification. We first discuss
these problems in general terms, and then focus on five
specific classes of techniques. ‘Additional reviews of FDI
are provided by Isermann (1993), Frank (1992), Kim
(1994), Kramer and Mah (1993) and Stephanopoulos and
Han (1994).

Fault Detection

Fault detection is a model-based task that involves
comparison of the observed behavior of the process to a
reference model representing faulit-free behavior, and
detecting significant discrepancies. Fault detection methods
are defined by the model used to represent normal behavior,
and the nature of the test used to detect deviation from the
normal model. No information concerning failure modes
and effects is required in the fault detection step.

A general representation of the fault detection problem
is shown in Fig. 3. The axes represent features nsed to
detect faults, z;, which are generally operating conditions
“and product quality measurements, but may also involve
derived quantities such as estimated values of parameters
and states, Additionally, features can include operating
history through the use of delayed measurements, trends,
and explicit clapsed times (e.g. the time from the
beginning of a batch). In this space, two types of
conditions define normal operation. First, the process must
obey certain constraints g(z) = 0, shown as a surface in
Fig. 3, which represent the governing equations of the
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process, such as mass balances or process dynamics.
Second, the process can be characterized in terms of a range
of normal variability within the subspace defined by the
model equations, shown as a contour in Fig. 3.

modei subspace
g(2)=0

range of
normal

variation
R

Figure 3. Fault detection.

Fault detection requires both the detection of departures
from the model subspace, indicative of changes in the
equations governing the process (e.g. the point z1), and
detection of excessive variability within the model
subspace (e.g. point zp), indicating an excursion from
normal operating conditions. Different fault detection
methods can be interpreted in ‘terms of this general
framework:

« ' Alarm limits. Alarms set at the safe operating
bounds of measured variables respond only to
the very large sexcursions from normal
operation, and represent - 4 particularly
insensitive method of fault detection.

«  Univariate statistical tests. Limit checks on
individual variables, such as 3o limits,
collectively —rtepresent a  hyperrectangle
enclosing the normal region which may
grossly overestimate the extent of the normal
region, causing low sensitivity to faults.

e Multivariate statistical tests. Multivariate
statistical models can form relatively accurate
representations of the normal region. The
Hotellings T2 test, for example, defines a
hyperellipse whose axes are small in
dimensions orthogonal to the model subspace,
while approximating variations within the
model subspace.

s Model residual rests. Techniques based on
evaluating model residuals r = g(z), such as
gross error detection methods and tests based
on the innovations of (extended) Kalman
filters, are capable of detecting departures from
the model subspace. These tests, however,
neglect variation within the model subspace.




o Compound tests, PCA and PLS, discussed
below, are examples of methods that support
compound tests involving both model
violation and variability, though restricted to
linear constraints on the features determined
by regression of historical data. Similar
techniques for general nonlinear analytical
models are currently facking.

The decision metrics associated with fault detection
methods are frequently based on two auxiliary quantities:
the rectified value z* (see Fig. 3), defined as the most
likely point in the model subspace given z (which, under
typical assumptions, is the mapping of z to the closest
point in the model subspace), and the mean value in the
model subspace zy. These metrics may include:

a. The distance from z to zg, or the magnitude of
the components zj - 2i0;

b. The distance from z to z*, or the magnitude of
the components z; - z*j;

¢. The distance from z* to zg, often measured in
a coordinate system defined in the model
subspace.

d. The magnitude of the model residual r, or of
its components, Trj. Because r = A (z - z¥),
where A is the local linearization of g(z)
around z*, this test is closely related to (b).

For example, the global and nodal tests involve metric (d),
while a third gross error detection test, the measurement
test, involves metric {b}). PCA and PLS-based fault
detection use both (b) and (¢), while multivariate SPC tests
use metric (a). For all fault detection tests, determining
appropriate  detection thresholds requires balancing
sensitivity against false alarm rate.

Fault Isolation

As a rule, it is desirable to apply fault isolation to the
maxjmum possible extent before
identification, due to the fact that fault iselation can be
performed without fault models, by performing fault

detection over different plant subsystems. As a result, fault”

isolation presents much more modest knowledge
requirements than fault identification. By isolating the
- fanlt, it may be possible to formulate a response without
further fault identification.

The three approaches to fault isolation are:
disaggregation, hierarchical decomposition, and topological
search. In the disaggregated approach, the process is
decomposed into several non-interacting subsystems. Each
subsystem requires a separate fault detection test, and the
fault is located by continuously monitoring each
subsystem for faults. This approach is suitable for
processes where there are decoupled processing centers.

In the hierarchical approach, the plant is broken into
successively smaller subsystems. Each tevel of aggregation
requires a fault detection test, although not all subsystems

subsystems and

attempting fault
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need to be monitored continuously: When a fault is
detected at the top level of the hierarchy, diagnostic focus
can be shifted to inferior subsystems to refine the fault
origin by applying fault detection to those subsystems.
Examples of this approach include McDowell and Davis
(1991), Miller, et al. (1994) and Ramesh, et al. (1992). It
should be noted that this approach lends itself well to an
object-oriented representation and an interface featuring

“zooming in” on the fault origin through successive layers
of detail.

The topological approach invoives modeling.
their causal precedence. Instead of
assuming non-interacting subsystems, if faults appear in
several subsystems, the subsystem farthest upstream is
assumed to be the origin of the fault, since it is possible
that the effects of the fault can propagate to subsequent
subsystems. This approach can work even in the case of
strongly connected subsystems (involving recycles or
feedback loops}, so long as there is sufficient time delay in
the loop to make the fault origin clear before the effects of
feedback obscure the origin. However, if the fault detection
sensitivity in different subsystems are not equal, the point
of earliest detection may not be the subsystem containing
the fault. '

Fault Identification

Fault = identification requires information on how
possible faults relate to observable symptoms (features). In
diagnostic systems, we are interested in deducing faults
from symptoms, which is opposite to the natural causal
directionality of predictive models. Diagnosis is therefore
an inverse problem, and as such, there are issues of
solution uniqueness, solution conditicning (particularly
with respect to model uncertainty), and the algorithmic
efficiency of the inversion process. Modeling effort and
accuracy is also of particular concemn, since there are
potentially a large number of fault modes. The literature
contains a wealth of qualitative, logical and semi-
quantitative model representations developed to help address
these issues,

To better understand the motivations for non- -
numerical models in diagnosis, it is instructive to consider
some potential limitations of direct parameter estimation
as a means of “inverting” a numerical model to determine
faults given observed variable trajectories. First, the
perameter estimation problern may have more than one
local optimum, particularly when the set of possible faults
is large, includes sensor failures, or contains faults with
similar effects. Parameter estimation will converge
arbitrarily to one of the local optima, missing other
solutions that may be more likely, or of interest as
alternative hypotheses. Many qualitative models used in
diagnosis are designed specifically to yield a ranked list of
possible faults without the expense of giobal optimization.
Second, modeling errors may have unpredictable effects on
astimated parameter values. On the other hand, abstract or



_approximate models can be “right” in the sense of
matching the actual fault behavior more often, by making
less precise or even incomplete predictions, thus increasing
robustness. Third, numerical estimation may be
computationally intractable for on-line application. Fourth,
the modeling effort involved with numerical modeling of
ail fault modes might be prohibitive. These factors account
for the interest in causal, semi-quantitative, and similar

model representations in fault diagnosis.

In general, there are three approaches to utilizing a
predictive model for on-line diagnosis:

1. Invert the model using an algorithm specific
to the model form, such as parameter
estimation in the case of numerical models,
graphical search in the case of causal
networks, or belief updating in the case of

. Bayesian network.

2. Apply a general technique such as hypothesis-
test or comparative simulation to effectively
invert the model. In hypothesis-test, a
conjecture is made about the identity of the
fault, and the model is used to yield a
prediction of the expected features, which is
then compared to the observed symptoms. The
process is repeated until the best match is
found. Comparative simulation’ is similar,
except that multiple models are run in parallet
with the process. '

3. Off-line, create a database of predicted

- symptoms for each possible fault, and use

. inductive learning techniques on this database
to yield a pattern classifier, such as a neural
network or decision tree. This approach is
often referred to as “model compilation.”

Of the three general approaches, the second is the least
efficient. The appeal of the third approach is superior on-
line efficiency. However, compiled forms of knowledge
such as pattern classifiers provide a weak “basis for
explanation and are not useful for supporting ancillary
tasks such as prognosis and correction. Therefore, in
practice is may be desirable to use pattern classifiers as a
supplement to, rather than a replacement for, predictive
models. .

Specific FDI Approaches

In this section, we review recent progress in five
classes of approaches to FDI: statistical process control,
parameter estimation, analytical redundancy, causal modet
analysis, and pattern recognition. These methods are
summarized in Table 1 in terms of their approaches to
feature generation, fault detection, and fault identification.
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Statistical Process Control Approaches

Statistical process control techniques such as Shewhart
charts, Cusum charts and Hotelling’s T2 are natural
candidates for detecting faults. These methodologies utilize
normal data to build a statistical characterization of the
normal operating region of the process that can be used to
detect abnormal events.

Projection techniques such as principal component
analysis (PCA) and partial least squares (PLS) have
recently attracted attention. In these approaches, fault
detection is accomplished by establishing control limits
on: (1) varation in projection (score) space, and (2)
mapping distance between the measured point and the point
projected onto the plane of constraints. Extensions to batch
process have been investigated by Nomikos and MacGregor
{1995) and Kourti, et al. (1995). Applications are discussed
in Piovoso and Kosanovich (1993).

Table 1. Categories of FDI Approaches and
Their Approaches to Feature Extraction, Fault
Detection and Identification.

Approach Features Detection | Identification
generated method method
SFC sample mean, {3 o limits, T2,|  pattern
{including |range, scores, ere. recagnition on
PCA, PLS) | contributions SCOTEs,
contributions
Estimation estimated parameter likelihood
{including |parametersand| bounds, | ratio (parallel
paraliel states innovation madels),
models) statistics | classification
of parameters
Analytical model statistical |  pattern
redundancy equation checks of ' |recognition or
(incl. parity residuals residuals  |causal analysis
space, input of residuals
observers)
Causal discretized or | simple range | graphical,
analysis Sfuzzified checks logical, and
(SDG, fault measure- abductive
tree, belief | ments and approaches
net, etc.) residuals
Partern any features | membership classifier
recognition . in normal output
(heural net, class (if
decision tree, represented)
rules, etc.)




Fault isolation using PCA and PLS can be carried out
by decomposing global PLS models into separate blocks
representing different process units (MacGregor, et al.,
1994). These authors also introduce contribution plots as a
way to analyze the measurement sources of abnormal
behavior within each block. Although contribution plots
do not strictly qualify as fault identification techniques
since they do not identify the fault, they may help focus
operator attention.

To carry out true diagnosis with pre-defined fault
modes, fault data is used to build PCA or PLS models
characterizing fault behavior, either pooling data from all
faults or by building a separate PLS/PCA model for each
fault. Fault identification is camied out via pattern
" recognition on the scores (for combined models), or by
comparative model analysis (for separate fault models).
Vinson, et al. (1994) have provided a very interesting
critique of the combined approach using the Tennessee
Eastman problem; their main difficulty was unique
classification of the patterns in the score space.

The appeal of statistical process control approaches
lies in their simplicity, rather than in any unique modeling
or statistical propcrtieé they might possess. PCA and PLS
are in essence regression techniques producing lincar
algebraic models that characterize normal operation. Thus
PCA and PLS can be considered a simple case of analytical
redundancy with linear algebraic models. Fault detection
with PCA and PLS is also closely related to gross error
detection techniques for linear systems, which have been
extensively studied. Discussion of analogies between gross
error detection and fault detection in PCA is given in
Kramer (1992) and Kramer and Mah (1993).

Parameter and State Estimation Approaches

Faults associated with continuous parametric changes
can be effectively diagnosed using parameter estimation
techniques if the system is observable and appropriate
mathematical models can be formulated. Beginning in the
1970’s, many authors have applied extended Kalman filters
and related approaches to this problem, recent examples
including Li and Olson (1991), Fathi, et al. (1993),
Jsermann and Freyermuth (1991), Isermann (1993), and
Ku, et al. (1992). To accomplish fault identification, many
of these approaches apply pattern classification or causal
analysis to the estimated states and parameters, which can
be considered the features extracted in this approach.

Aside from the rather stringent modeling requirements,
there are two main limitations in the parameter estimation
approach. First, as the number of faults represented by
undetermined parameters in the model grows large,
observability may be violated. Second, structural (integer)
parameters cannot typically be included in the estimation
models. To overcome both limitations, it is necessary to
use a bank of parallel estimators to reduce the number of
adjustable parameters per model and/or replace structural
parameterizations with -explicitly enumerated  structural
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alternatives. Not only does this multiply the modeling and
computation work, but this strategy also introduces an
additionat model discrimination step (most often
approached using the generalized likelihood ratio criterion)

. to determine which model best matches the process.

Approaches Based on Analytical Redundancy

Another large class of model-based methods is based
on analytical redundancy. The basic approach is to compare
actual behavior with that predicted by a model, and use the
resulting differences (residuals) as feature inputs to fault
identification via logical, causal, or pattern recognition
techniques. .

In the simplest form, measurements are directly
substituted into model equations, and the resulting residual
pattern is analyzed. The residual patterns are typically
discretized or given a quantitative degree of violation before

‘being causally related to faults. Recent examples of this

type of approach include Chang, et al. (1994), Howell
(1994), Lee (1994), Ning and Chou (1992), Petti and
Dhurjati (1991), Petti, et al. (1990), and Tsai and Chou
(1993). These methods differ mainly in terms of how
process faults are associated with residual patterns, rather
than the method of residual generation.

Some recent researchers, including Gertler and Singer
(1990), Frank (1990), Frank and Ding (1954) and Patton
and Chen (1993), have developed much more powerful
methods, known as structured residuals and unknown input
observers, that generate residuals with important properties
such as optimal robustness to model uncertainty,
decoupling from input disturbances, and incidence
structures tailored to reveal the identity of specific faults.
The theoretical basis of these methods, derived from
traditional control and identification, is very sound. This
line of work is advancing rapidly to include extensions to
nonlinear processes, multiple faults, and' structured model
errors.

Approaches Based on Causal Analysis

Many contributions have been based on the concept of
causal modeling of fault-symptom relationships. The
relationships in these causal models have taken many
different forms, including -qualitative and semni-quantitative
relationships, logical and probabilistic relations. Causal
models have primarily been used for fault identification.

Graphical cause-and-effect models, exemplified by the
signed directed graph (SDG), continue to appear frequently
in the literature. In a SDG, nodes represent the system
state variables and malfunctions, and arcs represent causal -
relationships. Recent work involves representing gains and
delays, the use of fuzzy logic, diagnosis of multiple faults,
increasing robustness and efficiency, and learning of fuzzy
membership functions (see Chang and Yu, 1990; Finch, et
al., 1990; Han, et al., 1994; Hsu and Yu, 1992; Mohindra
and Clark, 1993; Wilcox and Himmelblau, 1994; Park and
Seong, 1994; Qian, 1990; Yu and Lee, 1991).




Nuclear. engineering has primarily adopted fault trees
and similar representations for modeling causal knowledge.
Because the relationship between faults and symptoms
generally forms a graph, not a tree, the fauit trees
developed for each potential deviation or process alarm are
not independent, and must be integrated through a pre-
processing or run-time algorithm. Recent developments
involve real-time use of fault trees (Gmytrasiewicz, et al.,
1990; Zhang, 1994, Zhang, et al., 1994), goal trees and
success trees (Chen and Modarres, 1992; Kim, et al., 1990;
Nordvik, et al., 1994), and cause-consequence information
generated from HAZOP or similar design-stage studies
(Heino, et al., 1994; Martinez, et al., 1992).

Although many industrial diagnostic systems have
incorporated elemeénts of causal reasoning, from a
theoretical viewpoint this area suffers from a multiplicity
of medeling techniques and adoption of ad hoc critenia for
identifying possible fault origins. Another persistent
problem is the treatment of temporally-varying

measurements. Because causal modeling deals with relating -

states of symbolic variables, the logical approach to
unifying this area is through probability theory.
Probability theory is sufficiently powerful to represent
many types of causal influences, and also supports
graphical analysis in the form of Bayesian belief networks
(Rojas-Guzman and Kramer, 1993, 1994; Chu, 1993).

Partern Recognition Methods

Pattern recognition uses associations between data
patterns and fault classes without explicit modeling of
internal process states or structure. Although model-based
techniques are more flexible, there are several potential
reasons for adopting a pattern recognition approach to fault
identification:

»  To capture human fault recognition rules and
diagnostic associations that are not readily
translated into mathematical or causal models;

* To capture the diagnostic information
contained in fault data;

*  As compilations of model-based descriptions
for faster on-line response.

The first case suggests the application of rule-based
systems. Although research interest in this approach has
declined, diagnostic rules can nometheless provide a
compact and effective representation of simple diagnostic
heuristics. The free-form character of this approach is both
a potential benefit and a liability, Whether rule-based

systems can progress beyond their current limited niche is

aIt Open question.

In contrast, the last five years has seen considerable
research on training of pattern recognition systems from
exampies of fault behavior, addressing the second
motivation given above, Since there is rarely any prior
knowledge about the form of the probability distribution of
the symptoms conditioned on the faults (e.g. Gaussian),
non-parametric classifiers such as linear discriminants,

J AU, PP LA
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nearest-neighbor methods, decision trees, or neural
networks are usually applied. Although results obtained -
from these approaches are often similar in terms of

accuracy, there is an advantage to methods that output the

classification as a probability to permit inclusion of prior

favlt probabilities, control of false alarm rates, etc.

Another important property to be maintained is the ability

to detect novel situations for which the classifier is not

trained.

Recent work in the application of neural networks to
fault isolation include Becraft and Lee (1993), Fan, et al,
(1993), Farell and Roat (1994), Hoskins, et al. (1951),
Kavuri and Venkatasubramanian (1993, 1994), Kramer and -
Leonard (1990), Leonard and Kramer (1991), Marseguerra
and Zio (1994), Sorsa and Kiovo (1991, 1993), Srinivasan
and Batur (1994), Venkatasubramanian, et al. (1990),
Watanabe, et al. (1994), and Xing and Okrent (1994). In
spite of the high level of activity, the applicability of these
methods is seriously limited in practice by the availability
of ample, representative, well-documented fault data.

Decision trees are an alternative way to induce a-
classifier from training cases. Significant theory has been
developed on the statistical interpretation and optimization
of inductive decision trees in the presence of noisy features
(Quinlan, 1990). Although originally derived for discrete
feature vectors, decision trees can also be applied to a
mixture of continuous and discrete inputs (Saraiva and
Stephanopoulos, 1992), Decision trees possess certain
advantages relative to neural .networks, including the
automatic selection of inputs and the transparency of the
resulting classifier structure. However, the decision reg1ons
are limited to hyper—rectangular shapes.

For dynamic systems, pattern recognition in time is
an important issue. The methods discussed so far identify
faults given features developed from a moving time
window of fixed length. Cheung and Stephanopoulos
(1990), Konstantinov and Yoshida (1992), and Whiteley
and Davis (1992) give methods for deriving qualitative
features from dynamic trajectory. Wavelet transformations
have also been suggested (Bakshi and Stephanopoulos,
1992). To introduce memory into the classification, an
architecture like recurrent neural networks can be used,
where the current classification is an imput for future
classifications. Alternately, Leonard and Kramer (1993) and
Smyth (1994) present techniques which combine over time
the instantaneous estimates of the classifier using
knowledge of the statistical properties of the failure modes
of the system.

Finally, pattern recognition can also be used to
enhance run-time efficiency of model-based diagnosis by
“compiling” the model (learning with data simulated using
the model) since most classifiers run extremely fast once
they have been trained. However, the compiled form will
be much less maintainable than the model, and will not
support functions like prognosis and explanation. An
example of a system that compiles diagnostic knowiedge is
Far and Nakam1ch1 {1993).

[ — S
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Architectures, Environments, and Applications

Thus far, we have discussed the theory and specific
methods for fault diagnosis. In this section, we look at the
integration of these building blocks into functional
diagnostic systems, through a discussion of architectures,
tools and environments, and applications.

Diagnostic System Architectures

Three R&D projects that have been carried out under
the auspices of the European Commission exemplify the
architectures of diagnostic systems: ARTIST, REAKT, and
CommonKADS. Although by no means spanning the
range of possibilities, these systems are representative of
the state of the art, in which Al-derived methods are
featured prominently. - _

The purpose of the ARTIST project (Leitch, et al.,
1992) was to build 2 generic architecture for model-based
diagnosis, and to verify the architecture on different
applications. The architecture separates different types of
knowledge: process knowledge, hypothesis gcneratioh
knowledge, and diagnostic strategy knowledge. The
resulting ARTIST architecture is shown in Fig. 4, where
the rote of the different modules are: . -

+  Predictor: Produces behavioral predictions
based on explicit models of the physical
system from observations and detects
discrepancies between observed and predicted
behavior and/or different predictions.

«  Candidate proposer: Generates diagnostic
candidates based on discrepancies, ranks
candidates according to some criterion, refines

candidates with respect to structure and
behavior, and  discriminates between
candidates.

«  Diagnostic strategist: Controls the diagnostic
process by evaluating the performance of the
diagnostic process with respect to goals and
resources, determining the foci of attention
and suspicion, and determining the next
diagnostic action. :

ARTIST has been uvsed in different applications, including
diagnostic systems for the steam condenser and the boiler
of thermal power plants (Angeli, et al., 1994).

In the REAKT project (Fjellheim, et al.,, 1994), an
advanced tool for real time Al applications was developed.
Its main features include a blackboard architecture, multiple
cooperating agents, and predictable execution times for
critical tasks. For the purpose of this paper, the main
interest of REAKT lies in its support for a
diagnostic/alarm handling application at an oil refinery.
The general philosophy behind the application (called
MORSAF) is to manage alarm situations as far as possible
by anficipation, i.e. to compare actual with expected
behavior. The expectations are alarms predicted . by
occurrence of previous alarms or “pre-alarm” situations. Of
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course, not all alarms can be anticipated, and unexpected
alarms must be handled as well. A second principle of
MORSAF is to base diagnosis of a fault (alarm} situation
on causal knowledge, expressed in terms of causal
networks. These networks are also used for prediction.

Goals Resources Tests, measurements  Diagnosis
Next action \
Focus of suspicion
: ! Candidate
- Proposer
Candidates
Diagnostic Gonflicts
Strgteglst Discrepancies
Focus of attention
- ]
Pradictor
Discrepancies
Ohservations

Figure 4. ARTIST architecture.

The overall architecture is illustrated by the flow
diagram in Fig. 5. Incoming process data is analyzed by
MORSAF, and used to detect potentially alarming
situations, as well as updating the causal networks that
represent state information to be used by causal diagnosis.
Alarms are processed ad filtered by matching earlier
predicted alarms. Genuinely new (not expected) alarms are
used to predict later alarms, while the expected ones
{confirmed alarms) drive action suggestion. The latter also
requires explanations provided by diagnosis, which is
triggered by new alarms. The advice so generated is
presented to the operator.

We include a brief description of CommonKADS
(Schreiber, et al., 1994} here, because of its dominant
position as a de facto standard methodology for
development of knowledge based systems in Europe, and
because the diagnostic task has been described in a
systematic manner in this approach. A major theme in
CommonKADS is knowledge engineering as modeling. In
contrast to the more traditional view, where knowledge
acquisition was seen &s somehow “extracting” the
knowledge from the head of an expert, CommonKADS
stresses the active cooperation between the expert and the
knowledge engineer in modeling the domain of expertise.
The methods, notations and tools for supporting modeling
are important ingredients of CommonKADS. Among
several models, the expertise model is prominent. It
contzins domain knowledge, inference knowledge, and
control knowledge.
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Figure 5. MORSAF architecture.

An extremely valuable part of CommonKADS is a
library of generic and reusable Expertise Models (Breuker
and Van de Velde, 1994). The library contains models for
types of diagnosis, including model-based
diagnosis  and  “shallow”  diagnosis  (empirical,
associational). With the help of the library, a new
application need not start from scratch, but may rely on the
structure provided by an appropriately selected library
model for diagnosis. REAKT, mentioned above, embodies
this philosophy in the domain of real-time diagnosis
applications.

Tools and Environments

Implementation of diagnostic systems of the type
outlined here requires high-level  programming
environments and powerful knowledge representation tools.

- The foundation needed to support these systems includes

objects, methods, if-then rules, procedures, inheritance,
hierarchies, relations, event triggering, and multi-tasking
(for dealing with any number of problems simultanecusly).
Specific solution technologies, such as simulators,
classifiers, identification packages, belief networks,
statistical tools, fuzzy logic, etc. constitute a useful tool
layer above the basic representations. Advanced intelligent
automation systems environments, such as Gensym’s G2,
include representational and reasoning primitives (rules and
objects), a procedural language, a graphical interface, a
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multi-threaded evaluation engine, and links to external
code, databases, simulators, distributed control systems,
and data historians.

Graphics also play a key role in how knowledge can
be represented and used. Visual presentation can be
enormously valuable, once gathered, reasoning about
relationships . in otherwise scattered data can have
tremendous economic potential. In addition, many high-
level solutions are most clearly represented by graphical
languages. Connecting and configuring graphical objects
expresses the desired behavior, and with the right software
support, the graphic itself becomes the program. These are
often combined with schematic representations of th
system to be monitored. Gensym's G2 Diagnostic
Assistant (Fraleigh, et al., 1992) and MFM (Larsson,
1994} typify graphical langnages designed for diagnostic

purposes.

Applications

Literally hundreds of industrial applications could be
mentioned here, but only a few can be singled out for lack
of space. Some excellent examples found in the literature
-include:

* Diagnosis of PreussenElectra’s Staudinger
power plant (Neupert and Schlee, 1594);
*  Monitoring system for a cogeneration plant
_ (Padalkar, et al., 1991);

+ Operator support system for hydrogen
peroxide production plant (Turunen, et al.,
1992);

» Discharge reduction at a fertilizer plant
(Saelid, et al. 1992)

~ The latter system exemplifies the potential benefits from

diagnostic systems. Operating on one of Norsk Hydro’s
fertilizer plants since the beginning of 1993, the
performance has been tracked and analyzed with very
encouraging results. The introduction of the system led to
a decrease of nitrogen discharge to the sewer from the
ammotia stripper by a factor of ten, frorn an average of 9.9
kg/h to less than 1 kg/h.

Conclusions

As this paper has shown, the theoretical basis for
computerized fault diagnosis has advanced considerably
over the past few years. Still, this technology is not yet an
established engineering discipline with a common
terminology and a framework for systematically relating
one's own problems with those reported by others. As a
consequence, a practicing engineer will have no firm
ground if given the assignment to design and implement a
diagnosis system for a specific plant. He will be faced with
an ill-defined problem, an array of available methods, and
no reliable procedure for going from the problem to the
solution. What is missing is a sound engineering theory

Sor diagnostic systems.
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On a more specific level, a number of open challenges
remain within various approaches to diagnosis:

«  Fault isolation is fundamentally important
because it yields important diagnostic
information without requiring models of faulty
behavior. Topological, - functional. and
compositional decomposition strategies for
fault isolation need to be better characterized
and their limits better understood.

e« We would like to see better theoretical
grounding of causal techniques through the -
application of ‘probability theory, and
integration of these methods with those
derived from parameter estimation and
analytical redundancy, thus profiting from the
strong features of each. -

+  Techniques for determining the class of fault
(as opposed to specific fault identity) have not
received adequate study. Together with fault

~ isolation techniques, fault classification could
provide an attractive alternative to detailed
identification based on pre-enumerated faults.

«  Knowledge-based techniques are under-utilized
due to the lack of understanding on how to
integrate heuristic rules into maintainable,
verifiable FDI systems.

'« Because design-stage safety analyses such as
HAZOP, cause-consequence analysis, eic.
overlap many of the issues faced by
monitoring -and- diagnostic systems, it seems
reasonable to expect some re-use of
information. Specifying a common knowledge
format adequate for both off-line and on-line
tasks should be a high priority. .

«  More attention should be paid to the ancillary
problems of fault prediction, prognostication,
and response. The theory in these areas lags
considerably behind practical needs.

In terms of implementation, the requirements for
success of diagnostic technology in industrial plants are
not very different from those that apply to other
operational systems. Some of the important issues are:

«  The diagnostic system should not be separated
from other tools used by the operator, by
running on a Separate computer, using a
different user interface, etc. Instead, the system
should be an integral part of the operator’s
norma) working environment.

+  The user interface must be up to the standards
that one now takes for granted, i.e. intuitive
graphics, zooming infout on details.

«  Models, in one way or another, will be part of
diagnostic sysiems. High-level tools exist for
modular construction, modification and reuse’
must be developed.

+  Diagnostic systems will be critical to plant
operations. User organizations will demand.
that they are delivered by vendors with a good
track record, that are responsive to user needs,
and provide support and maintenance services.

As we have shown earlier in this paper, a number of
operational diagnosis systems have been successfully
deployed and accepted by industrial users. However, many
efforts have terminated with the shelving of unfinished
prototypes. In general, computerized fault diagnosis
systems are not as widely used today as one might expect,
given the potential benefits. The reasons for this lack of
acceptance, in our opinion, do not go much further than
the issues listed in this section. If the research community
is able to start developing engineering principles for
building diagnostic systems, and vendors deliver these
principles in robust, user-friendly software, user acceptance
will follow. In an ever-more competitive business
environment, industry has no choice other than adopting
new technology that will give competitive advantage.
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