Hybrid Drive Systems for Vehicles

EHS

Auxilliary Systems and Safety

Hybrid Drive Systems for Vehicles

EHS

Auxilliary systems

Auxilliary systems ?

- Fundamental support functions
 - Power Steering
 - Power Brakes
 - Air pressure (heavy vehicles)
 - Lighting
 - Ventilation
 - Suspension
 - 12/24 V system
- Comfort function
 - Air Conditioning
 - Power windows, seats, ...
 - Entertainment systems

Auxilliary systems cannot be disregarded

- Energy consumption and peak power significant
 - Sometimes in parity with the tractive energy
- Two distinct goals:
 - 1. Minimize energy consumption
 - 2. Limit peak power

Means ..

Technology selection

- Mechanical to electric
- Pneumatic to electric
- Hydraulic open loop to closed loop
- Hydraulic to electric
- ... to increase efficiency

Control and scheduling

- Load "shaving", e.g.:
 - reduce compressor speed at high load, or
- Intelligent use of braking energy, e.g.
 - regenerate energy to aux systems like compressor when the bus is braking.

Energy balance in the bus

(in average powers)

Auxiliary system – energy consumption

Air pressure driven loads

New technology selection

System	Pneum [W]	EI [W]
Doors	230	20
Suspension	260	25
Parkering Brake	150	10

Control

AC-system on/off condition duty cycle generator

Potential improvements of the auxiliary system

Conventional electric loads in a car

Engine Management	Power (W)	Multimedia & HVAC	Power (W)	Body Electrical	Power (W)
Fuel Pump& Injectors	135	High end audio sys.	300	Power Windows (4)	560
Ignition System	60	Navigation and GPS	150	Power Door Locks (4)	200
Electronic Throttle Sys.	60	Driver information display	30	Wipers and washers	140
Sensors & Actuators	110	Cabin climate valves	75	Heated backlight	500
Solenoids & Relays	20	Blower motor + ECU	370	Power seats (2)	460
Subtotal Engine	385	Subtotal Cabin Sys.	925	Subtotal Body Sys.	1860
Amps @14.2V	27.11	Amps @ 14.2V	65.14	Amps @ 14.2V	130.99
Chassis Electrification	Power (W)	Lighting (Exterior & Interior)	Power (W)	Future Systems	Power (W)
Electric assist steering	300	Headlamps (2)	120	DVD and in-seat displays	
ABS brake system	200	Running/Park lights (4)	130	Micro/Mild-hybrid functions	
Air suspension valves	50	Turn signal lamps	130	Active suspension	
Air compressor	500	Center high mount stop	65	Front/rear radar	
Subtotal Chassis	1050	Back-up, interior, license	45	Obstacle detection & Airbags	
Amps @14.2V	73.94	Subtotal lighting	490	Active cruise control	
		Amps @ 14.2V	34.51	Total Electrical/Electronics	4710
Charging System	Power (W)				
Alternator	3000				
Battery (80 Ah)	1000				
Starter motor	2200				

Drag powers ...

• Remember generator load 1... 2 kW !

To much ...?

- The conventional generator is not able to provide enough power to supply all loads ...
- Higher power is needed!
- ROLES

Is 12 Volt enough?

HAR DU NAGRA START-KABLAR? О. Т

EHS

Ernie I

- Damn kind of you to help me out ! That is of course a VERY OLD yankee ..
 - Are you sure that it can make my Yamagucci spin?

EHS

Ernie II

- It was like connecting Tjernobyl to the Duracell Rabitt

Ernie IV

The 12 V story

- 6 V to begin with
- 6 V electric generator and starter 1912
- 6 V not enough higher load and compression
- 12 V introduced 1955
- Still used, up to 1 kW
 - No electric hazard
 - Modest isolation requirements
 - Easy fusing

• Maximum power ?

Problems with increased load @ 12 V

Cable area becomes large

- 1 kW needs 8 mm diameter cable
- 4 kW need 16 mm diameter cable
- 10's of kW needs ...
- Connectors becomes expensive
 - Voltage drops must be kept very low

So, how much more do we need?

- 1992 MIT and Mercedes Benz took the initiative to a 42 V system voltage
- 42 ?, = 3*14 = charging voltage of a 36 V battery.

- Problems with 42 V:
 - Still not enough, in particular for hybrid power levels
 - Windings in machines bigger
 - Fusing more expensive
 - Filament lamps last shorter

48 V this time

AVL UK Expo 2014 / Ulf Stenzel

CO2 and Load Migration

48V Electrical Load Migration - Impact on eStorage

CO₂ reduction only Start/Stop, Boost, Recuperation

Electrical Load Migration Chassis Control, Climate Comfort, Engine Components Electrification, eBooster, etc...

AVL UK Expo 2014 / Ulf Stenzel

Different Voltages

System Comparison

Hybrid systems vs main functions

: Possible
 O : Limited
GSI : Gear Shift Indicator

	i-StARS 14V (2 to 4 kW)	i-BSG 48V (8 to 12 kW)	GMG 48V (8-15kW)	CMG > 48V (15 to 90 kW)
Cold start	0	•	۲	
Change of Mind	•	•	۲	•
Stop & Start	•	•	۲	٠
HE generator	•	•	•	•
Durability (1mcy)	•	•	•	•
Comfort Start	•	•	•	•
Stalling help		•	•	٠
Sailing / coasting	•	•	•	•
Boost (GSI*)	0	•	٠	•
Regenerative	0	۲	٠	•
Torque Monitoring	0	•	۲	•
Electrical Take off		0	•	•
Electrical drive /ZEV	1		0	•

FE Benefits from Stop-Start to 12v-48v Hybrids

High voltage?

- •> 1.5 V
- •> 15 V
- > 50 V
- > 150 V
- > 300 V
- •>3 kV

- > 50 V is regarded as high
- 48 V common
- 36/42 V ...

What is a dangerous equipment?

- Equipment where a fault can cause harm to a person or property.
- 12 V system can also be dangerous
 - Can cause fire
 - Hydrogen explosion possible
- Even if the voltage is low, the short circuit current is high and thus also the possible heat dissipation

Toyota Prius safety system

Basic dangers

- 1. Direct current through body
- 2. Short circuit current that cannot be interrupted
- High output voltage from switching converters
 Also EMC
- 4. Parasitic currents from switching converters
- 5. Fire or explosion

Current through body

- Current depends on
 - Voltage
 - AC, especially 50 Hz, is worst
 - But, DC is also dangerous
 - Resistance
 - Skin + body fluid. Skin most important
 - Moisturous skin worst. "Murare" ...
 - > 80 mA in more than 0.2 seconds can lead to cardiac arrest

Approximate values for body sensitivity to current

20	4 AMPERES AND OVER
15	Heart Paralysis, Serious Tissue and Organ Burning
10	.050 AMPS TO 4 AMPS
4 -	.051 Possible Ventricular Fibrillation
.050	
.030	30 mA - Breathing Difficult, Fibrillation in small children
.015	15 mA - Muscles "freeze" in 50% of the population
.010	>10 mA - Let-Go Threshold
.005	5 mA - GFCI Trip Level
.001	1 mA - Perception Level

Thus:

- Have the greatest respect for the traction battery!
 - It is dangerous!

Short circuit current

- Very large short circuit currents
 - Low inner resistance
 - Several 1000 Ampére short circuit current
 - Difficult to interrupt due to the inductance of the cables and the lack of zero crossings

Inductance

- Stored energy in the magnetic field.
- Unit is Henry
- Single conductor, 1 mikroHenry/m
- Equation u=L*di/dt
- What does that mean?

To breake an inductive current

- The inductance sets up a voltage to keep the current going.
- Arcs
- Used in ignition coils and in light tube igniters

Electric strength of air

- 3 MV/m
- Whe the air is ionized the temperature reaches several 1000 C in a plasma with strong light
- Burns
- Eyes damaged
- Used in welding

Conclusions on braking an inductive current:

- Very large voltages are created that may start sparcs.
- Use fuses, protective clothing, fire extinguisher
- Don't let it happen!

Power Electronics

- To convert electric energy
- Range: 0 1000 MW
- Switching amplifiers

Why Switch?

- Traditional converters have low efficiency, e.g. 25-60 %.
- Switching converters >95 %.

EHS

Classes

Class D Audio Amplifiers

Features

- Power ranges from 20 to 150 W (up to 400 W with application support)
- Excellent power efficiency (≤ 95%)
- Good EMC performance
- Excellent THD (0.01%)
- Symmetrical supply between 15 30 V
- Internal oscillator:
 - frequency adjustable between 200 and 600 kHz
 - can be overridden by an external clock (tracking option)
- Output stage protected against short circuit and overheating
- Simple SE and BTL applications
- Few external components
- Asymmetrical supply possible for BTL configurations (with application support)
- Powerpath ICs in Sil17P and HSOP24 Power SMD package

PWM

• A variable voltage is created with a pulse width / pulse period.

PWM in Car

- Long cables
- Square voltages contain wide spectrum
- Noise generated
- Can be heard in the radio ...

Conclusions on PWH & Safety

- Even if the average voltage is low ...
- ... the instantaneous voltage is still high
- Be careful!

