L10 - AC current control

Current vector abc $\rightarrow \alpha \beta$

- Symmetric 3-phase

$$
\left\{\begin{array}{l}
i_{1}(t)=\sqrt{2} \cdot \hat{\imath} \cdot \cos (\omega t-\varphi) \\
i_{2}(t)=\sqrt{2} \cdot \hat{\imath} \cdot \cos \left(\omega t-\frac{2 \pi}{3}-\varphi\right) \\
i_{3}(t)=\sqrt{2} \cdot \hat{\imath} \cdot \cos \left(\omega t-\frac{4 \pi}{3}-\varphi\right)
\end{array}\right.
$$

- Transform from abs to $\alpha \beta$

$$
\begin{aligned}
& \vec{\imath}^{\alpha \beta}=\sqrt{\frac{2}{3}} \cdot\left(i_{a} \cdot e^{j \frac{0 \pi}{3}}+i_{b} \cdot e^{j \frac{2 \pi}{3}}+i_{c} \cdot e^{j \frac{4 \pi}{3}}\right) \\
& \vec{i}^{\alpha \beta}=\sqrt{\frac{2}{3}} \cdot\left(\hat{\imath} \cdot \cos (\omega t-\varphi)+\hat{\imath} \cdot \cos \left(\omega t-\frac{2 \pi}{3}-\varphi\right) \cdot e^{j \frac{2 \pi}{3}}+\hat{\imath} \cdot \cos \left(\omega t-\frac{4 \pi}{3}-\varphi\right) \cdot e^{j \frac{4 \pi}{3}}\right) \quad\left\{\cos (\omega t)=\frac{e^{j \omega t}+e^{-j \omega t}}{2}\right\} \\
& \hat{i}^{\alpha \beta}=\sqrt{\frac{2}{3} \cdot \hat{\imath} \cdot\left(\frac{e^{j(\omega t-\varphi)}+e^{-j(\omega t-\varphi)}}{2}+\frac{e^{j\left(\omega t-\frac{2 \pi}{3}-\varphi\right)}+e^{-j\left(\omega t+\frac{2 \pi}{3}-\varphi\right)}}{2} \cdot e^{j \frac{2 \pi}{3}}+\frac{e^{j\left(\omega t-\frac{4 \pi}{3}-\varphi\right)}+e^{-j\left(\omega t+\frac{4 \pi}{3}-\varphi\right)}}{2} \cdot e^{j \frac{4 \pi}{3}}\right)}
\end{aligned}
$$

Current vector $\alpha \beta$

$$
\begin{aligned}
\vec{\imath}^{\alpha \beta} & =\sqrt{\frac{2}{3}} \cdot \frac{\hat{\imath}}{2} \cdot\left(\begin{array}{l}
e^{j \omega t-j \varphi}+e^{-j \omega t+\varphi}+\cdots \\
\cdots+e^{j \omega t-j \frac{2 \pi}{3}-j \varphi+j \frac{2 \pi}{3}}+e^{-j \omega t+j \frac{2 \pi}{3}+j \varphi+j \frac{2 \pi}{3}}+\cdots \\
\cdots+e^{j \omega t-j \frac{4 \pi}{3}-j \varphi+j \frac{4 \pi}{3}}+e^{-j \omega t+j \frac{4 \pi}{3}+j \varphi+j \frac{4 \pi}{3}}
\end{array}\right)= \\
& =\sqrt{\frac{2}{3} \cdot \frac{\hat{\imath}}{2} \cdot\left(e^{j \omega t-j \varphi}+e^{-j \omega t+j \varphi}+e^{j \omega t-j \varphi}+e^{-j \omega+j \varphi+j \frac{4 \pi}{3} t}+e^{j \omega t-j \varphi}+e^{-j \omega t+j \varphi+j \frac{8 \pi}{3}}\right)=} \\
& =\sqrt{\frac{2}{3} \cdot \frac{\imath}{2} \cdot\left(3 \cdot e^{j \omega t-j \varphi}+\frac{3 \cdot e^{-j \omega t+j \varphi}}{3} \cdot\left(1+e^{j \frac{4 \pi}{3}}+e^{\left.j \frac{8 \pi}{3}\right)}\right)=\right.} \\
& =\sqrt{\frac{3}{2} \cdot \hat{\imath} \cdot\left(e^{j \omega t-j}+\frac{e^{-j \omega t+}}{3} \cdot\left(1-\frac{1}{2}-j \frac{\sqrt{3}}{2}-\frac{1}{2}+j \frac{\sqrt{3}}{2}\right)\right)=} \\
& =\sqrt{\frac{3}{2} \cdot \hat{\imath} \cdot e^{j \omega t-j}=\sqrt{\frac{3}{2} \cdot \hat{l}(\cos (\omega t-\varphi)+j \sin (\omega t-\varphi))=i_{\alpha}+j \cdot i_{\beta}}} .
\end{aligned}
$$

Current vector $\alpha \beta \rightarrow \mathbf{d q}$

- The flux defines d-axis which lags EMF voltage by -90°

$$
\begin{aligned}
& \vec{i}_{d q}=\vec{i}_{\alpha \beta} \cdot e^{-j\left(\omega t-\frac{\pi}{2}\right)}=\sqrt{\frac{3}{2} \cdot \hat{\imath} \cdot e^{j \omega t-j \varphi} \cdot e^{-j\left(\omega t-\frac{\pi}{2}\right)}=} \\
& =\sqrt{\frac{3}{2} \cdot \hat{\imath} \cdot e^{j\left(\frac{\pi}{2}-\varphi\right)}}=\sqrt{\frac{3}{2} \cdot \hat{\imath}} \cdot\left(\cos \left(\frac{\pi}{2}-\varphi\right)+j \cdot \sin \left(\frac{\pi}{2}-\varphi\right)\right)=i_{d}+j \cdot i_{q}
\end{aligned}\left\{\begin{array}{l}
i_{d}=\sqrt{\frac{3}{2} \cdot \hat{\imath} \cdot \cos \left(\frac{\pi}{2}-\varphi\right)} \\
i_{q}=\sqrt{\frac{3}{2} \cdot \hat{\imath} \cdot \sin \left(\frac{\pi}{2}-\varphi\right)}
\end{array}\right.
$$

Power from dq

- Using $d q$-frame, dot product

$$
P=e^{d q} \cdot i^{d q}=e_{d} i_{d}+e_{q} i_{q}
$$

- Grid voltage

$$
\vec{e}^{\alpha \beta}=\sqrt{\frac{3}{2}} \cdot \hat{e} \cdot e^{j \omega t}
$$

- Transform $\alpha \beta \rightarrow \mathbf{d q}$

$$
\begin{aligned}
& \left.\vec{e}_{d q}=\vec{e}_{\alpha \beta} \cdot e^{j(\omega t} \frac{\pi}{2}-\phi\right) \\
& =\sqrt{\frac{3}{2}} \cdot \hat{e} \cdot e^{j \omega t-j \omega t+j \frac{\pi}{2}}= \\
& =j \cdot \sqrt{\frac{3}{2}} \cdot \hat{e}=\vec{e}_{q}\left(\vec{e}_{d}=0\right)
\end{aligned}
$$

- Active power

$$
\begin{aligned}
& P=e_{q} i_{q}=\sqrt{\frac{3}{2}} \cdot \hat{e} \cdot \sqrt{\frac{3}{2}} \cdot \hat{\imath} \sin \left(\frac{\pi}{2}-\phi\right)= \\
& =\frac{3}{2} \hat{e} \cdot \hat{\imath} \cos (\phi)=\sqrt{3} E_{L} I \cos (\phi)
\end{aligned}
$$

- Reactive power

$$
\begin{aligned}
& Q=e_{q} i_{d}=\sqrt{\frac{3}{2}} \cdot \hat{e} \cdot \sqrt{\frac{3}{2}} \cdot \hat{\imath} \cos n\left(\frac{\pi}{2}-\phi\right)= \\
& =\frac{3}{2} \hat{e} \cdot \hat{\imath} \sin (\phi)=\sqrt{3} E_{L} I \sin (\phi)
\end{aligned}
$$

Power from $\boldsymbol{\alpha} \boldsymbol{\beta}$

$$
\begin{aligned}
P= & \operatorname{Re}(\vec{u} \cdot \vec{\imath} *)=\operatorname{Re}\left(\sqrt{\frac{3}{2}} \hat{u} \cdot e^{j \omega} \cdot \sqrt{\frac{3}{2}} \hat{\imath} \cdot e^{-j(\omega t-\phi)}\right) \\
& =\frac{3}{2} \operatorname{Re}\left(\hat{u} \cdot \hat{\imath} \cdot e^{j \omega-j \omega+\phi}\right)=\frac{3}{2} \hat{u} \cdot \hat{\imath} \cos (\phi)=\sqrt{3} \cdot U \cdot I_{r m s, p h a s e} \cdot \cos (\varphi)
\end{aligned}
$$

Relation between $U_{d c}$ and $U_{\text {grid }}$

- Sinusoidal modulation
$U_{L N r m s}=\frac{1}{\sqrt{2}} \frac{U_{d c}}{2} \approx 0.35 U_{d c}$
$U_{\text {LLrms }}=\sqrt{\frac{3}{2}} \frac{U_{d c}}{2} \approx 0.61 U_{d c}$
- Symmetrical modulation

$$
\begin{aligned}
& U_{L L r m s}=\frac{U_{d c}}{\sqrt{2}} \approx 0.71 U_{d c} \\
& U_{L N r m s}=\frac{1}{\sqrt{3}} \frac{U_{d c}}{\sqrt{2}} \approx 0.41 U_{d c}
\end{aligned}
$$

Re-introduce the rotating reference frame

- Use the integral of the grid back emf vector:

$$
\begin{aligned}
& \vec{\psi}=\int_{0}^{t} \vec{e} \cdot d t=\int_{0}^{t} E \cdot e^{j \omega \cdot t} d t=\frac{\vec{e}}{j \cdot \omega} \\
& =\frac{E}{\omega} e^{j\left(\omega \cdot t-\frac{\pi}{2}\right)}
\end{aligned}
$$

Re-introduce the grid flux reference frame (d,q) ...

- Express the grid voltage equation in the grid flux reference frame

$$
\begin{aligned}
& \vec{u}^{\alpha \beta}=R \cdot \vec{i}^{\alpha \beta}+L \cdot \frac{d u^{\alpha \beta}}{d t}+\vec{e}^{\alpha \beta} \\
& \left\{\vec{s}^{\alpha \beta}=\vec{s}^{d q} \cdot e^{j \theta}\right\} \\
& \vec{u}_{s}^{d q} \cdot e^{j \theta}=R \cdot \vec{u}^{d q} \cdot e^{j \theta}+L \cdot \frac{d}{d t}\left(i^{d q} \cdot e^{j \theta}\right)+\vec{e}^{d q} \cdot e^{j \theta}= \\
& =R \cdot \vec{i}^{d q} \cdot e^{j \theta}+L \cdot \frac{d \vec{u}^{d q}}{d t} \cdot e^{j \theta}+j \cdot \frac{d \theta}{d t} \cdot L \cdot \vec{i}^{d q} \cdot e^{j \theta}+\vec{e}^{d q} \cdot e^{j \theta}= \\
& \vec{u}_{s}^{d q}=R \cdot \vec{i}^{d q}+L \cdot \frac{d \bar{t}^{d q}}{d t}+j \cdot \omega \cdot L \cdot \cdot \vec{i}^{d q}+\vec{e}^{d q}
\end{aligned}
$$

Split up the complex equation in real- and imaginary parts:

$$
u_{d}=R \cdot i_{d}+L \cdot \frac{d i_{d}}{d t}-\omega \cdot L \cdot i_{q}
$$

$$
u_{q}=R \cdot i_{q}+L \cdot \frac{d i_{q}}{d t}+\omega \cdot L \cdot i_{d}+e_{q}
$$

3-phase sampled vector control : 1

- Assume sampled control @ [..., k, k+1, k+2, ...]Ts
- Calculate voltage average over one sample period

$$
\begin{aligned}
& \frac{\int_{k \cdot T_{S}}^{(k+1) T_{S}} \vec{u} \cdot d t}{T_{S}}=\frac{R \cdot \int_{k \cdot T_{S}}^{(k+1) T_{S}} \vec{\imath} \cdot d t+L \cdot \int_{k \cdot T_{S}}^{(k+1) T_{S}} \frac{d \vec{l}}{d t} \cdot d t+j \cdot \omega \cdot L \int_{k \cdot T_{S}}^{(k+1) T_{S}} \vec{\imath} \cdot d t+\int_{k \cdot T_{S}}^{(k+1) T_{S}} \vec{e} \cdot d t}{T_{S}}= \\
& =\overline{\vec{u}}(k, k+1)=(R+j \cdot \omega \cdot L) \cdot \overline{\vec{\imath}}(k, k+1)+L \cdot \frac{\vec{\imath}(k+1)-\vec{\imath}(k)}{T_{S}}+\overline{\vec{e}}(k, k+1)
\end{aligned}
$$

3-phase sampled vector control : 2

Assume:

$$
\begin{aligned}
& \overrightarrow{\vec{u}}(k, k+1)=\vec{u}^{*}(k) \\
& \vec{\imath}(k+1)=\vec{\imath}^{*}(k) \\
& \overline{\vec{l}}(k, k+1)=\frac{\vec{l}^{*}(k)+\vec{l}(k)}{2} \\
& \overrightarrow{\vec{e}}(k, k+1)=\vec{e}(k) \\
& \vec{\imath}(k)=\sum_{n=0}\left(\vec{\imath}^{*}(n)-\vec{\imath}(n)\right)
\end{aligned}
$$

Gives:

$$
\begin{aligned}
& \vec{u}^{*}(k)=(R+j \cdot \omega \cdot L) \cdot \frac{\vec{l}^{*}(k)+\vec{\imath}(k)}{2}+L \cdot \frac{\vec{l}^{*}(k)-\vec{\imath}(k)}{T_{S}}+\vec{e}(k)= \\
& =R \cdot \frac{\vec{\imath} *(k)-\vec{\imath}(k)}{2}+R \cdot \vec{\imath}(k)+L \cdot \frac{\vec{\imath}^{*}(k)-\vec{\imath}(k)}{T_{S}}+j \cdot \omega \cdot L \cdot \frac{\vec{l}^{*}(k)+\vec{\imath}(k)}{2}+\vec{e}(k) \approx \\
& \approx\left(\frac{L}{T_{S}}+\frac{R}{2}\right)\left(\vec{\imath}^{*}(k)-\vec{\imath}(k)\right)+R \cdot \sum_{n=0}^{n=k-1}\left(\vec{\imath}^{*}(n)-\vec{\imath}(n)\right)+j \cdot \omega \cdot L \cdot \vec{\imath}(k)+\vec{e}(k)= \\
& =\left(\frac{L}{T_{S}}+\frac{R}{2}\right) \cdot(\underbrace{\left(\vec{\imath}^{*}(k)-\vec{\imath}(k)\right)}_{\text {Proportional }}+\underbrace{\frac{T_{S}}{\left(\frac{L}{R}+\frac{T_{S}}{2}\right)} \cdot \sum_{n=0}^{n=k-1}\left(\vec{\imath}^{*}(n)-\vec{\imath}(n)\right)}_{\text {Integral }})+\underbrace{j \cdot \omega \cdot L \cdot \vec{l}(k)+\vec{e}(k)}_{\text {Feed } \vec{\epsilon} \rightarrow \rightarrow \text { forward }}
\end{aligned}
$$

Current Controllers split on d - and q-

- Components

$$
\begin{aligned}
& u_{d}^{*}(k)=\left(\frac{L}{T_{s}}+\frac{R}{2}\right) \cdot\left(\left(i_{d}^{*}(k)-i_{d}(k)\right)+\frac{T_{s}}{\left(\frac{L}{R}+\frac{T_{s}}{2}\right)} \cdot \sum_{n=0}^{n=k-1}\left(i_{d}^{*}(n)-i_{d}(n)\right)\right)-\omega \cdot L \cdot i_{q}(k) \\
& u_{q}^{*}(k)=\left(\frac{L}{T_{s}}+\frac{R}{2}\right) \cdot\left(\left(i_{q}^{*}(k)-i_{q}(k)\right)+\frac{T_{s}}{\left(\frac{L}{R}+\frac{T_{s}}{2}\right)} \cdot \sum_{n=0}^{n=k-1}\left(i_{q}^{*}(n)-i_{q}(n)\right)\right)+\omega \cdot L \cdot i_{d}(k)+e_{q}(k)
\end{aligned}
$$

- Some evaluation of values ...
- >> L=1e-3;
— >> R=0.05;
- >> Ts=100e-6;
- >> [L/Ts R/2] $=\left[\begin{array}{ll}10.0000 & 0.0250\end{array}\right]$
$-\gg[L / R T s / 2]=\left[\begin{array}{ll}0.0200 & 0.00005\end{array}\right]$
- The inductance defines the gain
- The electric time constant defines the Integral gain

Control in a rotating reference frame

Example

- Corresponding to a traction machine at 100 Hz
- La=0.001;
- Ra=0.1;
- Ts=0.1e-3;
- Udc=600;
- Ea=250;
- fel=100;
- IsxREF=0;
- IsyREF=100 [A] @ 20 [ms]

Example

- Corresponding to a traction machine at 100 Hz
- La=0.001;
- Ra=0.1;
- Ts=0.1e-3;
- Udc=600;
- $E a=250 ;$
- fel=100;
- IsxREF=0;
- IsyREF=100 [A] @ 20 [ms]
- Notice:
- DC link ripple current

To Simulink for more ...

3-phase Direct Current Control

- Where is the current vector moving?

$$
\begin{aligned}
& \vec{u}^{\alpha \beta}=R \cdot \vec{\imath}^{\alpha \beta}+L \cdot \frac{d \vec{\imath}^{\alpha \beta}}{d t}+\vec{e}^{\alpha \beta} \\
& \frac{d \vec{\imath}^{\alpha \beta}}{d t}=\frac{\vec{u}^{\alpha \beta}-R \cdot \vec{\imath}^{\alpha \beta}-\vec{e}^{\alpha \beta}}{L}
\end{aligned}
$$

- The, which vetors have the best chance to move the current in a certain direction?

Selecting the right vector

vector $=$ sector $+s_{\text {offset }}$

$S_{\text {offset }}$	Decrease i_{q}	Increase i_{q}
Decrease i_{d}	4	2
Increase i_{d}	5	1

Tolerance bands in d - and q -

The Direct Current Controller

SCC for slow computer

- Predict current sample ahead when defining voltage reference

$$
\begin{aligned}
& \vec{u}=R \cdot \vec{\imath}+L \cdot \frac{d \vec{\imath}}{d t}+j \cdot \omega \cdot \vec{\imath} \\
& \vec{u}^{*}(k)=\vec{u}(k, k+1)=R \cdot \vec{\imath}_{s p}(k)+j \cdot \omega \cdot L \cdot \vec{\imath}_{s p}(k)+\frac{L}{T_{s}} \cdot\left(\vec{\imath}_{s p}(k+1)-\vec{\imath}_{s p}(k)\right) \\
& \vec{\imath}_{s p}(k+1)=\vec{\imath}_{s p}(k) \cdot\left(1-\frac{R \cdot T_{s}}{L}-j \cdot \omega \cdot T_{s}\right)+\frac{T_{s}}{L} \cdot \vec{u}^{*}(k) \\
& \hat{\imath}(k+1)=\vec{\imath}(k)+\left(\vec{\imath}_{s p}(k+1)-\vec{\imath}_{s p}(k)\right)
\end{aligned}
$$

SCC PIE parameters

$$
\begin{aligned}
& \left\{\begin{array}{l}
u_{d, r e f, k}=K \cdot\left(\left(i_{d, r e f, k}-i_{d, k}\right)+\frac{1}{T_{i}} \cdot \sum_{n=0}^{k-1}\left(i_{d, r e f, n}-i_{d, n}\right)\right)-K_{c} \cdot \frac{i_{q, r e f, k}+i_{q, k}}{2}+e_{d, k} \\
u_{q, r e f, k}=K \cdot\left(\left(i_{q, r e f, k}-i_{q, k}\right)+\frac{1}{T_{i}} \cdot \sum_{n=0}^{k-1}\left(i_{q, r e f, n}-i_{q, n}\right)\right)+K_{c} \cdot \frac{i_{d, r e f, k}+i_{d, k}}{2}+e_{q, k}
\end{array}\right. \\
& \left\{\begin{array}{l}
K=\left(\frac{L}{T_{s}}+\frac{R}{2}\right) \\
T_{i}=R /\left(\frac{L}{T_{s}}+\frac{R}{2}\right)=1 /\left(\frac{L}{R T_{s}}+\frac{1}{2}\right) \\
K_{c}=\frac{\omega_{1} L}{2}
\end{array}\right.
\end{aligned}
$$

SCC current ripple

- Sine, symmetric and bus clamped
- Udc=650V, L=10mH, R=1 Ω

SCC current ripple

SCC step response

Grid voltage

- Grid flux linkage $\psi \in E_{1} / \omega$
- Frequency $56 \mathrm{~Hz} \rightarrow \stackrel{\text { an }}{\square}$

- Termínail $\vec{R} \& \stackrel{\rightharpoonup}{L}$

3φ power electronic converter

- Two different current controllers
- Sampled current control
- Direct current control
- Voltages and currents mainly in $\alpha \beta$ frame,
- dq used for control
- Field rotation angle used instead of flux vector - Grid flux!
- Switch states $\{0,1\}$

SCC block

- Vector control - dq vector quantities of voltages and currents but same circuit and control parameters
- Feed forward EMF included, crosscoupled $\omega \mathrm{L}$ excluded
- Current controller calculate voltage references, no current delays and estimators presented
- Advanced angle to compensate rotation
- dq transformed back to $\alpha \beta$

SCC open

- Current controller gives $\mathbf{u}_{\mathrm{q}}{ }^{*}$
- Ts equals to fundamental period
- Unsampled references
- 180 voltage pulses
- What sampling frequency and dc link voltage has to be selected to match the grid?

Connecting PEC to Grid?

- $U_{L L}=400 \mathrm{~V} \mathrm{U}_{\mathrm{dc}}=600 \mathrm{~V} \mathrm{~T}_{\mathrm{s}}=1 \mathrm{~ms}$

Voltage demand

DCC current ripple

- Select di=2 A
- Switching intensity \& frequency?

DCC step response

Exercises on 3φ current control (1)

- PE ExercisesWithSolutions2019b vers 190206
- Vector representation of 3φ system
- Relations between quantities
- Coordinate transformation
- Control methods principles and schematics
- Sampled current control controller and parameters
- Direct current control controller and parameters
- Waveform presentation of control action over carrier period

