

Cooling

Performance limits

- Electrical
 - At too high voltage, the electric insulation will break down
- Mechancial
 - At too high speed, the rotor will be unbalanced or desintegrate
- Thermal
 - At too high temperature, the electric insulation will break down

Thermal balance

• When the heat generated, and the heat dissipated are in balance

Thermal vs Electrical

Thermal Conductivity of Solids

 Aluminum most used thermal conductor - 2 ... 3 times better than Iron Electric Drives Control

Heat loss sources in electrical machines

- Windings: DC and AC losses
- Core: hysteresis and eddy current losses
- Magnets: eddy current losses

Thermal barriers

- Incomplete slot fill
- Slot liner
- Pressure fits
- Poor convection conditions...

Heat transfer II - Convection

- Normally the case with water or oil cooled machines
- Heat transfer coefficient, h
 - Depends on fluid, speed , surface properties, channel size ...

Conditions of heat transfer	$[\mathbf{W} \cdot \mathbf{m}^{-2} \cdot \mathbf{K}^{-1}]$
Gases in free convection	5 - 37
Water in free convection	100 - 1200
Oil under free convection	50 - 350
Gas Flow in tubes and between tubes	10 - 350
Water flowing in tubes	500 - 1200
Oil flowing in tubes	300 - 1700
Molten metals flowing in tubes	2000 - 4500

Increased Cooling ...?

- Air cooling outside
- Water sleeve cooling
- Oil cooling, also on end winding and maybe inside rotor
- Oil cooling directly on the windings

Cooling inside the stator

Cooling inside the stator

windings

conductors

Peak Power determined by Direct winding cooling capability

Peak Power determined by thermal capacitance

No stator yoke

