Lecture 3 - Modulation

Summary
 An inductance keeps a current "constant"

Summary
 A capacitance keeps a voltage "constant"

Some fundamental topologies

Quadrants

1-quadrant

2-quadrant

2-quadrant

4-quadrant

Classification

Converter topologies

Remember:

- 1 side capacitive
- 1 side inductive
- ALWAYS!
DC out

AC out

Modulation - Control of voltage time area

$$
\begin{aligned}
& v_{c}=\left\{\begin{array}{l}
v_{a} \text { when } s=1 \\
v_{b} \text { when } s=0
\end{array}\right. \\
& u=s \cdot\left(v_{a}-v_{b}\right)=s \cdot u_{k}=\left\{\begin{array}{c}
u_{k} \text { when } s=1 \\
0 \text { when } s=0
\end{array}\right.
\end{aligned}
$$

Output voltage

Voltage control options

Assume a limited pulse interval T and a slowly varying switching voltage u_{k}

$$
\begin{gathered}
Y_{0}=\int_{0}^{T} u_{k} \cdot d t \\
u_{k}\left(\tau_{+}\right)=-\frac{d y\left(\tau_{+}\right)}{d \tau_{+}} \\
u_{k}\left(\tau_{-}\right)=\frac{d y\left(\tau_{-}\right)}{d \tau_{-}}
\end{gathered}
$$

Electric Drives
Control

Control with positive flank

$$
y\left(\tau_{+}\right)=\int_{\tau_{+}}^{T} u_{k} \cdot d t=Y_{0}-\int_{0}^{\tau_{+}} u_{k} \cdot d t
$$

Electric Drives
Control

Control with negative flank

$$
y\left(\tau_{-}\right)=\int_{0}^{\tau_{-}} u_{k} \cdot d t
$$

Electric Drives
Control

Control with both flanks

$$
\begin{aligned}
& Y_{0}=\int_{0}^{T / 2} u_{k} \cdot d t \\
& y\left(\tau_{+}, \tau_{-}\right)=y_{+}+y_{-} \\
& y_{+}=\int_{\tau_{+}}^{T / 2} u_{k} \cdot d t=Y_{0}-\int_{0}^{\tau_{+}} u_{k} \cdot d t \\
& y_{-}=\int_{T / 2}^{T / 2+\tau_{-}} u_{k} \cdot d t
\end{aligned}
$$

Electric Drives
Control

Carrier wave modulation

- A reference value y^{*} for the desired average voltage over one switching period is calculated by an external control system
- A modulation signal y_{m} is generated, such that $y(t)=y_{m}(t)$
- The reference is compared to the modulation signal to determine the switching instants.

Electric Drives
Control

Voltage time area vs. average voltage

- This far the modulation has been described with voltage time areas, both regarding the estimate of the output voltage time area as a function of the switching time instant, i.e. the modulating wave y_{m}, and the references for the output voltage time areas y^{*}.
- In the following sections and chapters, voltage

$$
\begin{aligned}
& u_{m}=\frac{y_{m}}{T_{S}} \\
& u *=\frac{y^{*}}{T_{s}}
\end{aligned}
$$ time area is replaced with average voltages.

The modulator

Electric Drives
Control

PWM-controlled dc converters

Electric Drives
Control

Two quadrant DC converters: I

Electric Drives
Control

Two quadrant DC converters: II

Electric Drives
Control

2-quadrant DC converters : III

Electric Drives
Control

Example

Electric Drives
Control

Blanking Time

Electric Drives
Control

Blanking Time + Voltage Drops

4 - quadrant DC converters

- Bridge connected
- 2 phase potentials:
- Only 1 output voltage $=1$ degree of freedom to be used for other purposes.

4-quadrant DC converters

$$
\begin{aligned}
& u *=v_{a}^{*}-v_{b}^{*} \\
& \operatorname{alt} 1: v_{a}^{*}=\operatorname{sign}(u *) \cdot \frac{U_{d c}}{2} \Rightarrow v_{b}^{*}=v_{a}^{*}-u *=\operatorname{sign}(u *) \cdot \frac{U_{d c}}{2}-u * \\
& \operatorname{alt2:} v_{a}^{*}=-v_{b}^{*} \Rightarrow v_{a}^{*}-v_{b}^{*}=2 \cdot v_{a}^{*} \Rightarrow\left\{\begin{array}{l}
v_{a}^{*}=\frac{u *}{2} \\
v_{b}^{*}=-\frac{u *}{2}
\end{array}\right.
\end{aligned}
$$

4-quadrant DC converters - alt 1

Electric Drives
Control

4-quadrant DC converters - alt 2

Electric Drives
Control

Example

- Sampling and symmetry ...

Electric Drives
Control

2-Q DC converters

- Bidirectional power
- $u>0$, i bidirectional
- Equivalent switch:

Modulation of a 2Q DC converter

- Only positive output voltages
- Currents both positive and negative
- Example:
- Udc=600;
- La=1e-3;
- $\mathrm{Ra}=0.1$;

$$
\frac{d i}{d t}=\frac{(u-e-R \cdot i)}{L}
$$

- ea=400;
- Ts=100e-6
- $\mathrm{u}^{*}=400+\mathrm{Ra}^{*} 10$

To Simulink

 Eile Edit View Display Diagram Simulation Analysis Code Iools Help

Currentz2Modudation
© © A Currentz2Modulation ,

One more 2Q example

- To reduce current ripple
- Example:
- Udc=600;
- La=1e-3;
- Ra=0.1;
- ea=400;
- Ts=25e-6 (much higher switching frequency)
$-\mathrm{u}^{*}=400+\mathrm{Ra}{ }^{*} 10$
- DC side: PWM current
- $A C$ side: PWM voltage

