Lecture 3 – Modulation

Electric Drives Control

1

Summary An inductance keeps a current "constant"

Electric Drives Control

2

Summary A capacitance keeps a voltage "constant"

Electric Drives Control

3

Some fundamental topologies

Converter topologies

Remember:

- 1 side capacitive
- 1 side inductive
- ALWAYS!

Modulation - Control of voltage time area

$$v_{c} = \begin{cases} v_{a} \text{ when } s = 1 \\ v_{b} \text{ when } s = 0 \end{cases}$$

$$u = s \cdot (v_{a} - v_{b}) = s \cdot u_{k} = \begin{cases} u_{k} \text{ when } s = 1 \\ 0 \text{ when } s = 0 \end{cases}$$

$$u = s \cdot (v_{a} - v_{b}) = s \cdot u_{k} = \begin{cases} u_{k} \text{ when } s = 1 \\ 0 \text{ when } s = 0 \end{cases}$$

Output voltage

е

_

Voltage control options

Assume a limited pulse interval T and a slowly varying switching voltage u_k

$$Y_0 = \int_0^T u_k \cdot dt$$
$$u_k(\tau_+) = -\frac{dy(\tau_+)}{d\tau_+}$$
$$u_k(\tau_-) = \frac{dy(\tau_-)}{d\tau_-}$$

 $\overline{\tau}_+$

n

T

Control with positive flank

$$y(\tau_{+}) = \int_{\tau_{+}}^{T} u_{k} \cdot dt = Y_{0} - \int_{0}^{\tau_{+}} u_{k} \cdot dt$$

Control with negative flank

Control with both flanks

$$Y_{0} = \int_{0}^{T/2} u_{k} \cdot dt$$

$$y(\tau_{+}, \tau_{-}) = y_{+} + y_{-}$$

$$y_{+} = \int_{\tau_{+}}^{T/2} u_{k} \cdot dt = Y_{0} - \int_{0}^{\tau_{+}} u_{k} \cdot dt$$

$$y_{-} = \int_{T/2}^{T/2 + \tau_{-}} u_{k} \cdot dt$$
Electric Drives
Control

Carrier wave modulation

- A reference value y* for the desired average voltage over one switching period is calculated by an external control system
- A modulation signal y_m is generated, such that $y(t)=y_m(t)$
- The reference is compared to the modulation signal to determine the switching instants.

Voltage time area vs. average voltage

- This far the modulation has been described with voltage time areas, both regarding the estimate of the output voltage time area as a function of the switching time instant, i.e. the modulating wave y_m , and the references for the output voltage time areas y^* .
- In the following sections and chapters, voltage time area is replaced with average voltages.

 u_m

PWM-controlled dc converters

-Udo/2

u

Electric Drives Control

Two quadrant DC converters : I

Two quadrant DC converters : II

Control

2-quadrant DC converters : III

Current sampling - how often?

- When the carrier turns, i.e. With twice the switching frequency!

Electric Dr Control

Blanking Time + Voltage Drops

Electric Drives Control

4 – quadrant DC converters

- Bridge connected
 - 2 phase potentials:
 - Only 1 output voltage = 1 degree of freedom to be used for other purposes.

4-quadrant DC converters

$$u *= v_a^* - v_b^*$$

$$alt1: v_a^* = sign(u *) \cdot \frac{U_{dc}}{2} \Rightarrow v_b^* = v_a^* - u *= sign(u *) \cdot \frac{U_{dc}}{2} - u *$$

$$alt2: v_a^* = -v_b^* \Rightarrow v_a^* - v_b^* = 2 \cdot v_a^* \Rightarrow \begin{cases} v_a^* = \frac{u *}{2} \\ v_b^* = -\frac{u *}{2} \end{cases}$$

4-quadrant DC converters – alt 1

4-quadrant DC converters – alt 2

Example

• Sampling and symmetry ...

2-Q DC converters

- Bidirectional power
 - *u*>0, *i* bidirectional
- Equivalent switch:

Modulation of a 2Q DC converter

 $\frac{di}{dt} = \frac{(u - e - R \cdot i)}{L}$

- Only positive output voltages
- Currents both positive and negative
- Example:
 - Udc=600;
 - La=1e-3;
 - Ra=0.1;
 - ea=400;
 - Ts=100e-6
 - u* = 400 + Ra*10

To Simulink

One more 2Q example

- To reduce current ripple
- Example:
 - Udc=600;
 - La=1e-3;
 - Ra=0.1;
 - ea=400;
 - Ts=25e-6 (much higher switching frequency)
 - u* = 400 + Ra*10
- DC side: PWM current
- AC side: PWM voltage

