L8 The DC Machine and related Control

Our Theoretical Background

- We make Torque with
- Lorentz forces, and
- Reluctance forces
- We create rotation
- With a 3-phase winding (symmetrically distributed in space), and
- A 3-phase current (symmetrically distributed in time)
- We model the 3-phase winding with Vectors

- But...
- Today we will replace the 3-phase winding with another solution ...

Lorentz and Reluctance forces

3-phase stator Reluctance \& PM rotor

Rotation by means of 3 phase windings and currents

3-phase winding currents as vectors

- Assign each winding a direction
- Scale each equations contribution with a unity vector in each direction
- Add the equations, vectorially .

$$
\begin{array}{r}
\sqrt{\frac{2}{3}} \cdot\left(u_{a}=R_{s} \cdot i_{a}+\frac{d \psi_{a}}{d t}=R_{s} \cdot i_{a}+\frac{d}{d t}\left(\psi_{\delta a}+L_{s \lambda} \cdot i_{a}\right)\right) \\
e^{j \cdot \frac{2 \pi}{3}} \cdot \sqrt{\frac{2}{3}} \cdot\left(u_{b}=R_{s} \cdot i_{b}+\frac{d \psi_{b}}{d t}=R_{s} \cdot i_{b}+\frac{d}{d t}\left(\psi_{\delta b}+L_{s \lambda} \cdot i_{b}\right)\right) \\
+\quad e^{j \cdot \frac{4 \pi}{3}} \cdot \sqrt{\frac{2}{3}} \cdot\left(u_{c}=R_{s} \cdot i_{c}+\frac{d \psi_{c}}{d t}=R_{s} \cdot i_{c}+\frac{d}{d t}\left(\psi_{\delta c}+L_{s \lambda} \cdot i_{c}\right)\right) \\
\vec{u}_{s}^{\alpha \beta}=R_{s} \cdot i_{s}^{\alpha \beta}+\frac{d \vec{\psi}_{s}^{\alpha \beta}}{d t}=R_{s} \cdot i_{s}^{\alpha \beta}+\frac{d}{d t}\left(\vec{\psi}_{\delta}^{\alpha \beta}+L_{s \lambda} \cdot \vec{l}_{s}^{\alpha \beta}\right)
\end{array}
$$

Introduce the rotor reference frame (x, y)

- Express the stator equation in the rotor reference frame

$$
\begin{aligned}
& \vec{u}_{s}^{\alpha \beta}=R_{s} \cdot \vec{\imath}_{s}^{\alpha \beta}+\frac{d}{d t}\left(\vec{\psi}_{\delta}^{\alpha \beta}+L_{s \lambda} \cdot \vec{\imath}_{s}^{\alpha \beta}\right) \\
& \begin{aligned}
\left\{\vec{s}_{s}^{\alpha \beta}\right. & \left.=\vec{s}_{s}^{x y} \cdot e^{j \theta_{r}}\right\}
\end{aligned} \\
& \begin{aligned}
\vec{u}_{s}^{x y} \cdot e^{j \theta_{r}} & =R_{s} \cdot \vec{\imath}_{s}^{x y} \cdot e^{j \theta_{r}}+\frac{d}{d t}\left(\vec{\psi}_{\delta}^{x y} \cdot e^{j \theta_{r}}+L_{s \lambda} \cdot \vec{\imath}_{s}^{x y} \cdot e^{j \theta_{r}}\right) \\
& =R_{s} \cdot \vec{\imath}_{s}^{x y} \cdot e^{j \theta_{r}}+\frac{d}{d t}\left(\vec{\psi}_{\delta}^{x y}+L_{s \lambda} \cdot \vec{\imath}_{s}^{d q}\right) \cdot e^{j \theta_{r}}+j \cdot \frac{d \theta_{r}}{d t} \cdot\left(\vec{\psi}_{\delta}^{x y}+L_{s \lambda} \cdot \vec{l}_{s}^{x y}\right) \cdot e^{j \theta_{r}}
\end{aligned} \\
& \vec{u}_{s}^{x y}=R_{s} \cdot \vec{l}_{s}^{x y}+\frac{d}{d t}\left(\vec{\psi}_{\delta}^{x y}+L_{s \lambda} \cdot \vec{l}_{s}^{x y}\right)+j \cdot \omega_{r} \cdot\left(\vec{\psi}_{\delta}^{x y}+L_{s \lambda} \cdot \vec{l}_{s}^{x y}\right)
\end{aligned}
$$

- Split up the complex equation in real- and imaginary parts:

$$
\begin{aligned}
u_{s x} & =R_{s} \cdot i_{s x}+\frac{d}{d t}\left(\psi_{m}+L_{m x} \cdot i_{s x}+L_{s \lambda} \cdot i_{s x}\right)-\omega_{r} \cdot\left(L_{m y} \cdot i_{s y}+L_{s \lambda} \cdot i_{s y}\right)= \\
& =R_{s} \cdot i_{s x}+\frac{d}{d t}\left(\psi_{m}+L_{s x} \cdot i_{s x}\right)-\omega_{r} \cdot L_{s y} \cdot i_{s y}
\end{aligned}
$$

$$
u_{s y}=R_{s} \cdot i_{s y}+\frac{d}{d t}\left(L_{m y} \cdot i_{s y}+L_{s \lambda} \cdot i_{s y}\right)+\omega_{r} \cdot\left(\psi_{m}+L_{m x} \cdot i_{s x}+L_{s \lambda} \cdot i_{s x}\right)=
$$

$$
=R_{s} \cdot i_{s y}+L_{s y} \cdot \frac{d i_{s y}}{d t}+\omega_{r} \cdot\left(\psi_{m}+L_{s x} \cdot i_{s x}\right)
$$

The 3-phase winding is electronically commutated

- The $i_{s X}$ and $i_{s y}$ currents cannot be supplied directly!
- Instead, they have to be supplied as $\mathbf{3}$ phase currents
- The translation is made in two steps:
- First, from $x y$ to $\alpha \beta$:

$$
\begin{aligned}
& \vec{l}_{s}^{x y}=i_{s x}+j i_{s y}=i_{s} e^{j \gamma} \\
& \vec{l}_{s}^{\alpha \beta}=\vec{l}_{s}^{x y} e^{j \theta_{r}}=i_{s} e^{j\left(\gamma+\theta_{r}\right)}=i_{s \alpha}+j i_{s \beta} \\
& i_{s \alpha}+j i_{s \beta}=i_{s} \cos \left(\omega_{r} t+\gamma\right)+j i_{s} \sin \left(\omega_{r} t+\gamma\right)
\end{aligned}
$$

- Then, from $\alpha \beta$ to $a b c$:

$$
\begin{aligned}
& i_{a}=\sqrt{\frac{2}{3}} i_{s \alpha} \\
& i_{b}=\sqrt{\frac{2}{3}}\left(-\frac{1}{2} i_{s \alpha}+\frac{\sqrt{3}}{2} i_{s \beta}\right) \\
& i_{c}=\sqrt{\frac{2}{3}}\left(-\frac{1}{2} i_{s \alpha}-\frac{\sqrt{3}}{2} i_{s \beta}\right)
\end{aligned}
$$

What if the stator winding could be mechanically commutated ... ???

- Take the equation from the y-axis (i.e NO $i_{S X}$ current!) ...

$$
u_{s y}=R_{s} \cdot i_{s y}+L_{s y} \cdot \frac{d i_{s y}}{d t}+\omega_{r} \cdot\left(\psi_{m}+L_{s x} \cdot i_{s x}\right)
$$

- And replace the "sy"-index with "a", as in "armature"..

$$
u_{a}=R_{a} \cdot i_{a}+L_{a} \cdot \frac{d i_{a}}{d t}+\omega_{r} \cdot \psi_{m}
$$

- ... can this be implemented ... ?

First: - Turn the machine "inside out"

- PM magnets in the stator
- Commutator winding in the rotor
- The commutator FORCES the current to keep the intended distribution

Then: - Replace the PM with an Electro Magnet (EM)

- Now we are close....

Electric Equations

Electric \& Mechanic equations

- Enjoy the symmetry of Nature!

Separate field supply

- IF electrically magnetized, the field winding is also a dynamic system
- ... but with no back-emf

$$
\begin{aligned}
& u_{f}=R_{f} \cdot i_{f}+L_{f} \cdot \frac{d i_{f}}{d t} \\
& \psi_{m}=L_{m} \cdot i_{f} \\
& L_{f}=L_{m}+L_{f \lambda}
\end{aligned}
$$

Torque Control

- Use the control law from the generic circuit

$$
\begin{aligned}
& i_{a}^{*}=\frac{T^{*}}{\psi_{m}} \\
& u_{a}^{*}(k)=\left(\frac{L_{a}}{T_{s}}+\frac{R_{a}}{2}\right) \cdot\left(\left(i_{a}^{*}(k)-i_{a}(k)\right)+\frac{T_{s}}{\left(\frac{L_{a}}{R_{a}}+\frac{T_{s}}{2}\right)} \cdot \sum_{n=0}^{n=k-1}\left(i_{a}^{*}(n)-i_{a}(n)\right)\right)+e_{a}(k) \\
& e_{a}(k)=\omega_{r}(k) \cdot \psi_{m}
\end{aligned}
$$

Field weakening

$$
\begin{aligned}
& e_{a}=\omega_{r} \cdot \psi_{m} \\
& \psi_{m}^{*}=\left\{\begin{array}{c}
\psi_{m, n o m} \text { if } \omega_{r}<\omega_{r, n o m} \\
\psi_{m, \text { nom }} \cdot \frac{\omega_{r, n o m}}{\omega_{r}} \text { if } \omega_{r}>\omega_{r, n o m}
\end{array}\right.
\end{aligned}
$$

Example with 2Q DC/DC supply and current control

