L9: AC power $+3 \varphi$ modulation

Single phase power (with sine functions)

$$
\begin{aligned}
& \left\{\begin{array}{l}
u(t)=\hat{u}_{p h} \cdot \cos (\omega t) \\
i(t)=\hat{\imath}_{p h} \cdot \cos (\omega t-\varphi)
\end{array}\right. \\
& p(t)=\hat{u}_{p h} \cdot \hat{\imath}_{p h} \cdot(\cos (\omega t) \cdot \cos (\omega t-\varphi))= \\
& =\left\{\cos (x) \cdot \cos (x-y)=\frac{\cos (y)+\cos (2 \cdot x+y)}{2}\right\}= \\
& =\frac{\hat{u}_{p h} \cdot \hat{\imath}_{p h}}{2} \cdot(\cos (\varphi)+\cos (2 \omega t-\varphi))= \\
& =\frac{\sqrt{2} \cdot U_{p h} \cdot \sqrt{2} \cdot I_{p h}}{2} \cdot \cos (\varphi)= \\
& =U_{p h} \cdot I_{p h} \cdot \cos (\varphi)+U_{p h} \cdot I_{p h} \cdot \cos (2 \omega t-\varphi)
\end{aligned}
$$

Single phase power (with vectors)

$$
\left\{\begin{array}{l}
u(t)=\hat{u}_{p h} \cdot \cos (\omega t)=\hat{u}_{p h} \cdot \frac{e^{j \omega t}+e^{-j \omega t}}{2} \\
i(t)=\hat{\imath}_{p h} \cdot \cos (\omega t-\varphi)=\hat{\imath}_{p h} \cdot \frac{e^{j \omega t-j}+e^{-j \omega t+j \varphi}}{2}
\end{array}\right.
$$

$$
\begin{aligned}
& p(t)=u(t) \cdot i(t)=\hat{u}_{p h} \cdot \hat{l}_{p h} \cdot\left(\frac{e^{j \omega t}+e^{-j \omega t}}{2}\right) \cdot\left(\frac{e^{j \omega t-j \varphi}+e^{-j \omega t+j \varphi}}{2}\right) \\
& =\frac{U_{p h} \cdot I_{p h}}{2} \cdot\left[e^{j \omega t+j \omega t-j \varphi}+e^{j \omega t-j \omega t+j \varphi}+e^{-j \omega t+j \omega t-j \varphi}+e^{-j \omega t-j \omega t+j \varphi}\right]= \\
& =\frac{U_{p h \cdot} \cdot I_{p h}}{2} \cdot\left[\left(e^{2 j \omega t-j \varphi}+e^{-(2 j \omega t-j)}\right)+\left(e^{j \varphi}+e^{-j \varphi}\right)\right]= \\
& =U_{p h} \cdot I_{p h} \cdot \cos (\varphi)+U_{p h} \cdot I_{p h} \cdot \cos (2 \omega t-\varphi)
\end{aligned}
$$

Single phase active and reactive power

- Voltage and current

$$
\left\{\begin{array}{l}
u(t)=\hat{u}_{p h} \cdot \cos (\omega t) \\
i(t)=\hat{\imath}_{p h} \cdot \cos (\omega t-\varphi)
\end{array}\right.
$$

- Active power

$$
P_{\text {ave }}=U_{m} \cdot I_{m} \cdot \cos (\varphi)
$$

- Reactive power
$Q_{a v}=U_{m} \cdot I_{m} \cdot \sin (\varphi)$
- Apparent power
$S_{\text {ave }}=U_{m} \cdot I_{m}$

Three phase voltage and current

$$
\begin{aligned}
& \left\{\begin{array}{l}
u_{a}(t)=\hat{u}_{p h} \cdot \cos (\omega t)=\sqrt{2} \cdot U_{p h} \cdot \cos (\omega t) \\
u_{b}(t)=\hat{u}_{p h} \cdot \cos \left(\omega t-\frac{2 \pi}{3}\right)=\sqrt{2} \cdot U_{p h} \cdot \cos \left(\omega t-\frac{2 \pi}{3}\right) \\
u_{c}(t)=\hat{u}_{p h} \cdot \cos \left(\omega t-\frac{4 \pi}{3}\right)=\sqrt{2} \cdot U_{p h} \cdot \cos \left(\omega t-\frac{4 \pi}{3}\right)
\end{array}\right. \\
& \left\{\begin{array}{l}
i_{a}(t)=\hat{i}_{p h} \cdot \cos (\omega t-\varphi)=\sqrt{2} \cdot I_{p h} \cdot \cos (\omega t-\varphi) \\
i_{b}(t)=\hat{\imath}_{p h} \cdot \cos \left(\omega t-\frac{2 \pi}{3}-\varphi\right)=\sqrt{2} \cdot I_{p h} \cdot \cos \left(\omega t-\frac{2 \pi}{3}-\varphi\right) \\
i_{c}(t)=\hat{\imath}_{p h} \cdot \cos \left(\omega t-\frac{4 \pi}{3}-\varphi\right)=\sqrt{2} \cdot I_{p h} \cdot \cos \left(\omega t-\frac{4 \pi}{3}-\varphi\right)
\end{array}\right. \\
& \left\{\begin{array}{l}
e_{a}=\hat{e} \cdot \cos (\omega \cdot t)=\sqrt{2} \cdot E_{p h} \cdot \cos (\omega \cdot t) \\
e_{b}=\hat{e} \cdot \cos \left(\omega \cdot t-\frac{2 \pi}{3}\right)=\sqrt{2} \cdot E_{p h} \cdot \cos \left(\omega \cdot t-\frac{2 \pi}{3}\right) \\
e_{c}=\hat{e} \cdot \cos \left(\omega \cdot t-\frac{4 \pi}{3}\right)=\sqrt{2} \cdot E_{p h} \cdot \cos \left(\omega \cdot t-\frac{4 \pi}{3}\right)
\end{array}\right.
\end{aligned}
$$

Three phase power

$$
\begin{aligned}
p(t) & =\hat{u}_{p h} \cdot \hat{\imath}_{p h} \cdot\left(\cos (\omega t) \cdot \cos (\omega t-\varphi)+\cos \left(\omega t-\frac{2 \pi}{3}\right) \cdot \cos \left(\omega t-\frac{2 \pi}{3}-\varphi\right)+\cos \left(\omega t-\frac{4 \pi}{3}\right) \cdot \cos \left(\omega t-\frac{4 \pi}{3}-\varphi\right)\right)= \\
& =\left\{\cos (x) \cdot \cos (x-y)=\frac{\cos (y)+\cos (2 \cdot x+y)}{2}\right\}= \\
& =\frac{\hat{u}_{p h} \cdot \hat{\iota}_{p h}}{2} \cdot\left(\cos (\varphi)+\cos (2 \omega t-\varphi)+\cos (\varphi)+\cos \left(2 \omega t-\frac{4 \pi}{3}-\varphi\right)+\cos (\varphi)+\cos \left(2 \omega t-\frac{8 \pi}{3}-\varphi\right)\right)= \\
& =\frac{\hat{u}_{p h} \cdot \hat{\imath}_{p h}}{2} \cdot(3 \cdot \cos (\varphi)+\underbrace{\cos (2 \omega t-\varphi)+\cos \left(2 \omega t-\frac{2 \pi}{3}-\varphi\right)+\cos \left(2 \omega t-\frac{4 \pi}{3}-\varphi\right)}_{=0})=
\end{aligned}
$$

$$
\begin{aligned}
& =3 \cdot \frac{\sqrt{2} \cdot U_{p h} \cdot \sqrt{2} \cdot I_{p h}}{2} \cdot \cos (\varphi)= \\
& =3 \cdot U_{p h} \cdot I_{p h} \cdot \cos (\varphi)=\sqrt{3} \cdot U_{p h-p h} \cdot I_{p h} \cdot \cos (\varphi)
\end{aligned}
$$

The generic 3-phase load

$$
\begin{array}{r}
\sqrt{\frac{2}{3}} \cdot e^{j 0} \cdot\left(u_{a}=R \cdot i_{a}+L \cdot \frac{d i_{a}}{d t}+e_{a}\right) \\
+\sqrt{\frac{2}{3}} \cdot e^{j \frac{2 \pi}{3}} \cdot\left(u_{b}=R \cdot i_{b}+L \cdot \frac{d i_{b}}{d t}+e_{b}\right) \\
p(t)=u_{a} \cdot i_{a}+u_{b} \cdot i_{b}+u_{c} \cdot i_{c}^{j \frac{2 \pi}{3}} \cdot\left(u_{c}=R \cdot i_{c}+L \cdot \frac{d i_{c}}{d t}+e_{c}\right) \\
\vec{u}=R \cdot \vec{\imath}+L \cdot \frac{d \vec{\imath}}{d t}+\vec{e}
\end{array}
$$

Example, grid voltage vector

$$
\begin{aligned}
\vec{e} & =\sqrt{\frac{2}{3}} \cdot\left(e_{a}+e_{b} \cdot e^{j \frac{2 \pi}{3}}+e_{c} \cdot e^{j \frac{4 \pi}{3}}\right)= \\
& =\sqrt{\frac{2}{3}} \cdot \hat{e} \cdot\left(\cos (\omega \cdot t)+\cos \left(\omega \cdot t-\frac{2 \pi}{3}\right) \cdot\left(-\frac{1}{2}+j \frac{\sqrt{3}}{2}\right)+\cos \left(\omega \cdot t-\frac{4 \pi}{3}\right) \cdot\left(-\frac{1}{2}-j \frac{\sqrt{3}}{2}\right)\right)= \\
& =\sqrt{\frac{2}{3}} \cdot \hat{e} \cdot\binom{\cos (\omega \cdot t)+\left(\cos (\omega \cdot t) \cdot \cos \left(\frac{2 \pi}{3}\right)+\sin (\omega \cdot t) \cdot \sin \left(\frac{2 \pi}{3}\right)\right) \cdot\left(-\frac{1}{2}+j \frac{\sqrt{3}}{2}\right)}{+\left(\cos (\omega \cdot t) \cdot \cos \left(\frac{4 \pi}{3}\right)+\sin (\omega \cdot t) \cdot \sin \left(\frac{4 \pi}{3}\right)\right) \cdot\left(-\frac{1}{2}-j \frac{\sqrt{3}}{2}\right)}= \\
& =\sqrt{\frac{2}{3} \cdot \hat{e} \cdot\left(\cos (\omega \cdot t) \cdot\left(1+\frac{1}{4}+\frac{1}{4}\right)+j \cdot \sin (\omega \cdot t) \cdot\left(\frac{3}{4}+\frac{3}{4}\right)\right)=} \\
& =\sqrt{\frac{3}{2} \cdot \hat{e} \cdot(\cos (\omega \cdot t)+j \cdot \sin (\omega \cdot t))=E \cdot e^{j \omega t}}
\end{aligned}
$$

Transformation example: abc $\rightarrow \alpha \beta$

$$
\left\{\begin{array}{l}
\vec{x}^{\alpha \beta}=x_{\alpha}+j \cdot x_{b}=\sqrt{\frac{2}{3}} \cdot\left(x_{a} \cdot e^{j 0}+x_{b} \cdot e^{j \frac{2 \pi}{3}}+x_{c} \cdot e^{j \frac{4 \pi}{3}}\right)= \\
=\sqrt{\frac{2}{3}} \cdot\left(x_{a}+x_{b} \cdot\left(-\frac{1}{2}+j \cdot \frac{\sqrt{3}}{2}\right)+x_{c} \cdot\left(-\frac{1}{2}-j \cdot \frac{\sqrt{3}}{2}\right)\right) \\
x_{\alpha}=\sqrt{\frac{2}{3}} \cdot\left(x_{a}-\frac{x_{b}}{2}-\frac{x_{c}}{2}\right)=\sqrt{\frac{2}{3}} \cdot x_{a}-\frac{\sqrt{2}}{2 \cdot \sqrt{3}} \cdot x_{b}-\frac{\sqrt{2}}{2 \cdot \sqrt{3}} x_{c}= \\
=\sqrt{\frac{2}{3}} \cdot x_{a}-\frac{1}{\sqrt{6}} \cdot\left(x_{b}+x_{c}\right) \\
x_{\beta}=\sqrt{\frac{2}{3}} \cdot\left(\frac{\sqrt{3}}{2} \cdot x_{b}-\frac{\sqrt{3}}{2} \cdot x_{c}\right)=\frac{\sqrt{2}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{2} \cdot x_{b}-\frac{\sqrt{2}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{2} \cdot x_{c}= \\
=\frac{1}{\sqrt{2}} \cdot\left(x_{b}-x_{c}\right)
\end{array}\right.
$$

Transformation example: $\alpha \beta \rightarrow a b c$

$$
\left\{\begin{array}{l}
x_{a}=\sqrt{\frac{2}{3} \cdot x_{\alpha}} \\
x_{b}=\sqrt{\frac{2}{3}} \cdot\left(-\frac{x_{\alpha}}{2}+x_{\beta} \cdot \frac{\sqrt{3}}{2}\right)=-\frac{x_{\alpha}}{\sqrt{6}}+x_{\beta} \cdot \frac{1}{\sqrt{2}} \\
x_{c}=\sqrt{\frac{2}{3}} \cdot\left(-\frac{x_{\alpha}}{2}-x_{\beta} \cdot \frac{\sqrt{3}}{2}\right)=-\frac{x_{\alpha}}{\sqrt{6}}-x_{\beta} \cdot \frac{1}{\sqrt{2}}
\end{array}\right.
$$

3-phase converter

3-phase output voltage \rightarrow as vector: I

$$
\vec{u}^{\alpha \beta}=\sqrt{\frac{3}{2}} \cdot u_{a}+j \frac{1}{\sqrt{2}} \cdot\left(u_{b}-u_{c}\right)=u_{\alpha}+j \cdot u_{\beta}
$$

3-phase converters - 8 switch states

$\vec{u}(1,0,0)=\sqrt{\frac{2}{3}} U_{d c}=-\vec{u}(0,1,1)$
$\vec{u}(0,1,0)=\sqrt{\frac{2}{3}} U_{d c} \cdot e^{j \frac{2 \cdot \pi}{3}}=-\vec{u}(1,0,1)$
$\vec{u}(0,0,1)=\sqrt{\frac{2}{3}} U_{d c} \cdot e^{j \frac{4 \cdot \pi}{3}}=-\vec{u}(1,1,0)$
$\vec{u}(0,0,0)=0=\vec{u}(1,1,1)$

Rotating reference frame

- Use the integral of the grid back emf vector:

$$
\begin{aligned}
& \vec{\psi}=\int_{0}^{t} \vec{e} \cdot d t=\int_{0}^{t} E \cdot e^{j \omega \cdot t} d t=\frac{\vec{e}}{j \cdot \omega} \\
& =\frac{E}{\omega} e^{j\left(\omega \cdot t-\frac{\pi}{2}\right)}
\end{aligned}
$$

Introduce the grid flux reference frame (d,q)

- Express the stator equation in the rotor reference frame

$$
\begin{aligned}
& \vec{u}^{\alpha \beta}=R \cdot \vec{\imath}^{\alpha \beta}+L \cdot \frac{d \vec{l}^{\alpha \beta}}{d t}+\vec{e}^{\alpha \beta} \\
& \left\{\vec{s}^{\alpha \beta}=\vec{s}^{d q} \cdot e^{j \theta}\right\} \\
& \vec{u}_{s}^{d q} \cdot e^{j \theta}=R \cdot \vec{i}^{d q} \cdot e^{j \theta}+L \cdot \frac{d}{d t}\left(\vec{i}^{d q} \cdot e^{j \theta}\right)+\vec{e}^{d q} \cdot e^{j \theta}= \\
& =R \cdot \vec{i}^{d q} \cdot e^{j \theta}+L \cdot \frac{d \vec{t}^{d q}}{d t} \cdot e^{j \theta}+j \cdot \frac{d \theta}{d t} \cdot L \cdot \vec{i}^{d q} \cdot e^{j \theta}+\vec{e}^{d q} \cdot e^{j \theta}= \\
& \vec{u}_{s}^{d q}=R \cdot \vec{i}^{d q}+L \cdot \frac{d \vec{\imath}^{d q}}{d t}+j \cdot \omega \cdot L \cdot \vec{i}^{d q}+\vec{e}^{d q}
\end{aligned}
$$

Split up the complex equation in real- and imaginary parts:

$$
u_{d}=R \cdot i_{d}+L \cdot \frac{d i_{d}}{d t}-\omega \cdot L \cdot i_{q}
$$

$$
u_{q}=R \cdot i_{q}+L \cdot \frac{d i_{q}}{d t}+\omega \cdot L \cdot i_{d}+e_{q}
$$

Active power ...

- Express the terminal power of the load

$$
\begin{aligned}
\vec{u}=R \cdot \vec{\imath}+L \cdot \frac{d \vec{\imath}}{d t}+j \cdot \omega \cdot L \cdot \vec{\imath}+\vec{e} \\
\left.\begin{array}{rl}
p(t) & =\operatorname{Re}\left\{\vec{\imath} \cdot \vec{\imath}^{*}\right\}
\end{array}\right)=\underbrace{\operatorname{Re}\left\{R \cdot \vec{\imath} \cdot \vec{\imath}^{*}+L \cdot \frac{d \vec{\imath}}{d t}\right.}_{\begin{array}{c}
1 \\
\text { Resistive } \\
\text { losses }
\end{array}} \underbrace{\left.R \vec{l}^{*}+j \cdot \omega \cdot L \cdot \vec{\imath} \cdot \vec{\imath}^{*}+\vec{e} \cdot \vec{\imath}\right\}}_{\begin{array}{c}
\text { Energizing } \\
\text { inductances }
\end{array}} \begin{array}{l}
\text { Power absorbed } \\
\text { by the grid back emf }
\end{array}
\end{aligned}
$$

Stationarity:

$p(t)=E \cdot|\vec{\imath}| \cdot \cos (\varphi)=E \cdot \sqrt{\frac{3}{2}} \cdot\left|\hat{\imath}_{\text {phase }}\right| \cdot \cos (\varphi)=\sqrt{3} \cdot E \cdot I_{\text {rms }, \text { phase }} \cdot \cos (\varphi)$

3-phase converters - sinusoidal references

- Assume a rotating voltage reference vector

$$
\begin{array}{ll}
\vec{u}^{*}=u^{*} \cdot e^{j \omega t}=u^{*} \cdot(\cos (\omega t)+j \cdot \sin (\omega t))=u_{\alpha}^{*}+j \cdot u_{\beta}^{*} \\
u_{a}^{*}=\sqrt{\frac{2}{3} u_{\alpha}^{*}} \\
u_{b}^{*}=\frac{1}{\sqrt{2}} u_{\beta}^{*}-\frac{1}{\sqrt{6}} u_{\alpha}^{*} \\
u_{c}^{*}=-\frac{1}{\sqrt{2}} u_{\beta}^{*}-\frac{1}{\sqrt{6}} u_{\alpha}^{*} & u_{a}^{*}=\sqrt{\frac{2}{3} \cdot u^{*} \cos (\omega t)}
\end{array}
$$

3-phase converters modulation

Simplest with sinusoidal references...

... but the DC link voltage is badly utilized.

3-phase converters - symmetrization

- 3 phase potentials, only 2 vector components. One degree of freedom to be used for other purposes.

$$
\begin{aligned}
& v_{a z}^{*}=u_{a}^{*}-v_{z}^{*} \\
& v_{b z}^{*}=u_{b}^{*}-v_{z}^{*} \\
& v_{c z}^{*}=u_{c}^{*}-v_{z}^{*}
\end{aligned}
$$

3-phase symmetrized modulation

$$
v_{z}^{*}=\frac{\max \left(u_{a}^{*}, u_{b}^{*}, u_{c}^{*}\right)+\min \left(u_{a}^{*}, u_{b}^{*}, u_{c}^{*}\right)}{2}
$$

Maximum phase voltage with sinusoidal modulation : Udc/2
Maximum phase-to phase voltage with symmetrized modulation : Udc > Phase voltage Udc/sqrt(3), i.e. 2/sqrt(3)=1.15 times larger than with sinusoidal modulation.

3-phase minimum switching modulation

$v_{z} *=-\min \left(\frac{U_{d c}}{2}-\max \left(u_{a}^{*}, u_{b}^{*}, u_{c}^{*}\right),-\frac{U_{d c}}{2}-\min \left(u_{a}^{*}, u_{b}^{*}, u_{c}^{*}\right)\right)$

One phase is not switching for 260 degree intervals ...

Modulation sequence vs. ripple

$$
\vec{u}^{\alpha \beta}=R \cdot \vec{\imath}^{\alpha \beta}+L \cdot \frac{d \vec{\imath}^{\alpha \beta}}{d t}+\vec{e}^{\alpha \beta}
$$

Modulation sequence vs. ripple

$$
\frac{d \vec{i}}{d t}=\frac{\vec{u}-\vec{e}}{L}
$$

