EIE015 Power Electronics

Home assignment 4

PMSM control with field weakening

Introduction

In this assignment you will study torque control of Permanent Magnet Synchronous Machines, and develop your own additional field weakening algorithm. The field-weakening algorithm is needed to limit the voltage requirement at high speeds. The general approach is described in the text book.

Vector control

The current control of a PMSM is almost identical to the one used for vector control of a generic three phase load. Use the program *PMSM1* to recognise the control system you studied in vector control of a generic three phase load and applied to active filter control. Use the following settings:

\[
\begin{align*}
R_s &= 0.5; \\
p &= 6; \\
L_{sx} &= 0.003; \\
L_{sy} &= 0.003; \\
\Psi_{m} &= 0.16; \\
U_{dc} &= 250; \\
J &= 0.02; \\
d_i &= 1; \\
T_s &= 0.0002083;
\end{align*}
\]

Run the following cases:

<table>
<thead>
<tr>
<th>CASE</th>
<th>References & settings</th>
<th>Simulation results</th>
<th>Your comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Isx*=0</td>
<td>The “currents” window</td>
<td>The x-axis current is disturbed when the y-axis current changes fast. Why is that?</td>
</tr>
<tr>
<td></td>
<td>Isy*=10 A @ 0.005 s</td>
<td></td>
<td>Think carefully on the time interval where the disturbance takes place, and what vectors are involved before you answer.</td>
</tr>
<tr>
<td></td>
<td>Isy=5 A @ 0.05 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sampled current control.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Same as case 1, but with DCC.</td>
<td>The “currents” window</td>
<td>The x-axis current is not disturbed in this case? How come, since there</td>
</tr>
</tbody>
</table>
Add functionality to the current controller to eliminate the problem shown in case 3, and run case 4 to prove that you did it right.

4 Same as 3 but with your upgraded controller The “currents” window OK?

Field weakening

A certain torque can be achieved by the use of an infinite number of combinations of the stator current components in the x/y-reference frame. As long as the stator voltage required to achieve any of these currents is lower than the highest achievable, a common strategy is to use the shortest possible current vector, thus maximizing the “torque/current”-ratio. When the speed increases the voltage requirements also increases and its is necessary to move the stator current vector along the “constant torque line” (line along which all current vectors produce the same torque) in such a way that the stator flux linkage and thus the induced voltage is limited.

A particular case is that when $L_{sx}=L_{sy}$, i.e. the reluctance torque contribution is zero. The figure above illustrates that the torque is the same independent of the i_{sx}-current. The Iso-voltage curves describe where the stator current must be for constant voltage, and are parts of ellipses with a radius that shrinks as the speed increases. To run the machine into high speed with constant torque it is necessary to force the current
vector into the 2’nd (or 3’rd at negative torques) quadrant along the “Iso”-torque curve with the particular desired torque, until the current limit is reached. In this particular case it means that the i_{sy}-current (that produces torque) is kept constant, but the i_{sx}-current is increased along the negative x-axis. When the current limit is reached, the i_{sy}-current has to be reduced accordingly to stay within the current limit.

Use the program PMSM2. To allow acceleration to high speeds, we need to simulate about 2 seconds of real time. This takes far too long time unless you have a very fast computer, and in order to speed up the simulation we replace the PWM-modulated voltage source with a continuous one. The continuous one sets an output voltage equal to the voltage reference but constant during the sampling interval. It is the switchings that is difficult for the simulation program to resolve exactly in time, and that’s why the simulation is rather slow. By removing the switchings, the simulation runs much faster, as you will see with PMSM2.

Run the following cases:

<table>
<thead>
<tr>
<th>CASE</th>
<th>References & settings</th>
<th>Simulation results</th>
<th>Your comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Same as case 1, but this time 2 seconds simulation time.</td>
<td>The “currents” window</td>
<td>We are gradually loosing the current after 1.5 seconds. Why?</td>
</tr>
</tbody>
</table>

The answer to the question in case 5 is related to the need of field weakening. Build a simple field weakening function into the simulation program and run case 6.

<table>
<thead>
<tr>
<th>CASE</th>
<th>References & settings</th>
<th>Simulation results</th>
<th>Your comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Same as case 4, but upgraded with a field weakening controller.</td>
<td>The “currents” window</td>
<td>Are you happy with the results?</td>
</tr>
</tbody>
</table>

You notice that the x-axis current increases in the negative direction, eventually to a level that may be too high for the equipment.

ADDITIONAL QUESTION TO BE ANSWERED: Which is the highest current modulus that is needed to run at extremely high speeds, with the parameters given?

Report requirements:

We want the report as e-mail or printed on paper, preferably as an e-mail. You will get it back with our comments before the lab. In case that the report is not good enough, you will have a chance later to upgrade it according to our recommendations. The form of your comment is free, but the questions should be answered in a way that convinces us that you do understand your own answer.