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Abbreviations and variables

Abbreviation Explanation
MBR Membrane bioreactor
HRT Hydraulic retention time
RAS Return activated sludge
SRT Sludge retention time
WAS Waste activated sludge
WWTP Wastewater treatment plant

Variable Explanation Unit
Abio Bioreactor surface area m2

H Pressure head m
hbio Water level in the bioreactor m
hRAS Water level in the RAS pump tank m
href Reference height, height of crest of the weir m
L Length of the weir m
MLSS Mixed liquor suspended solids g/m3

µ Coefficient, accounts for friction loss -
n Number of revolutions -
P Power W
Q Flow rate m3 /s
Qbio Incoming flow rate m3 /s
QDMB RAS flow rate calculated from dynamic mass balance m3 /s
Qmean Mean of the four RAS flow rate estimates m3 /s
Qmedian Median of the four RAS flow rate estimates m3 /s
Qpump RAS flow rate calculated from pump model m3 /s
Q

⇤
pump RAS flow rate from the control system m3 /s

QRAS RAS flow rate m3 /s
QSMB RAS flow rate calculated from static mass balance m3 /s
Qtot Total outgoing flow rate from bioreactor m3 /s
QWAS WAS flow rate m3 /s
Qweir RAS flow rate calculated over weir m3 /s
SSRAS Suspended solids in the RAS flow g/m3

Vbio Bioreactor volume m3

i



1 Introduction

The Henriksdal wastewater treatment plant (WWTP) in Stockholm, Sweden, has under-
gone a massive rebuild in recent years. Facing both an increasing population and stricter
effluent requirements, the owner Stockholm Vatten och Avfall (SVOA) needed to increase
the capacity and the effectiveness of the treatment plant. In addition, one of SVOA’s other
WWTPs, Bromma, is to be terminated and the wastewater will instead be treated at Hen-
riksdal WWTP. The WWTP is situated underground, which makes it difficult to extend
the area of the treatment plant. SVOA therefore decided to implement a relatively new
and compact treatment process - Membrane Bioreactor (MBR). Henriksdal WWTP will
be one of the world’s largest wastewater treatment facility using MBR once it is finalized.
By 2040, the treatment plant will treat wastewater from 1 621 000 people, with an average
daily influent flow rate of 530 000 m3/d = 6.13 m3/s (Stockholm Vatten och Avfall, 2017).

1.1 The treatment process

The total incoming flow is split in seven separate lines. The primary treatment consists of
screens, sandtraps, and a primary settler. The biological treatment process at Henriksdal
WWTP consists of a MBR process with pre and post denitrification (Figure 1). Before
the wastewater enters the biological treatment, it is filtered in a fine screen to reduce
solids. This is needed to avoid build up of coarse material and debris in the MBR. The
wastewater then enters the anoxic zone where pre denitrification occurs. Each treatment
line has two flexible zones that can be aerated or not. After the flex zones, there is an
aerated zone followed by a deoxidation zone where external carbon is added to stimulate
denitrification.

Figure 1. Simple overview of the treatment process.

In a traditional activated sludge plant, the sludge is separated in secondary settlers whereas
at Henriksdal WWTP, these are replaced with aerated membranes. The membranes con-
sist of hollow fibres that efficiently remove suspended solids from the effluent by filtration,
and can achieve very low suspended solids concentrations in the effluent (Hammer and
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Hammer, 2014; Stockholm Vatten och Avfall, 2017). The membranes are aerated to pre-
vent clogging and fouling. The sludge is withdrawn from the bottom of the membrane
tank. Part of the settled sludge is recirculated as return activated sludge (RAS). The ex-
cess sludge, or waste activated sludge (WAS) is thickened and digested to produce biogas.
The RAS flow is pumped, with a lift height of approximately 1 m, back to the deoxidation
zone.

The MBR process has, just like an activated sludge process, the benefit that the hydraulic
retention time (HRT) and the sludge retention time (SRT) are separated and the goal
should be to have a longer SRT than the HRT. The conditions in such a process allows
for both rapid and slow growing microorganisms to thrive, which in turn affect the BOD
removal, nitrogen removal, and the sludge characteristics. It also makes it possible to
control the sludge age, which is important for nitrogen removal (la Cour Jansen et al.,
2019).

The sludge concentration in the aerated zone should be kept stable and constant as an
average over time, which is controlled by the excess sludge rate (QWAS). QRAS controls
the partitioning between the membrane tank and the bioreactor. It is undesirable to have a
large build up of sludge in the MBR tank. Furthermore, QRAS has a major impact on the
treatment performance so QRAS must be estimated as good as possible to be able to ana-
lyze the overall performance. The energy consumption of the RAS pumps is a major part
of the total energy consumption. For advanced control of the RAS pumps, it is beneficial
to have a robust measurement or estimate of the flow rate. The MBR process is the most
energy consuming part of the treatment plant, where the aeration of the membranes has
the highest energy demand followed by the 56 RAS pumps (8 RAS pumps for each of the
7 lines).

1.2 Objective

The RAS flow rate is difficult to measure in the real plant due to physical constraints. It is
instead estimated based on the pumps’ characteristics and the frequency they are currently
operated at. The objective of this study is to evaluate other methods to estimate QRAS to
create a soft sensor that can be used to analyze performance and for advanced control of
the RAS pumps. Several estimates of QRAS will be evaluated and compared. A possible
benefit with this is redundancy in the soft sensor. In the future it may also be possible to
use the different calculations for fault detection and/or predictive maintenance. This is,
however, not included in this study.

This study will focus on line 1 of the WWTP as it is currently being deployed but can
easily be extended to include several lines.
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2 Estimating the return activated sludge flow rate

Monitoring and control of wastewater treatment processes are essential for well function-
ing treatment plants that are resource efficient and comply with effluent requirements.
On-line and off-line analysis of a number of process variables; flow rates, concentrations
of nitrogen (ammonia, nitrates, and total nitrogen), phosphorous (phosphates and total
phosphorous), suspended solids, biochemical and chemical oxygen demand amongst oth-
ers, is the core of monitoring. However, some process variables may be hard or impos-
sible to monitor in a reliable way, either due to lack of equipment or physical constraints
at the treatment plant. Thus arises a need for other ways of monitoring. Known relations
and well-monitored variables can be used to estimate other process variables - i.e. soft-
sensors.

Soft-sensors have been vastly used in wastewater treatment and process control (see e.g.
Haimi et al. (2013) and the references therein). The soft sensor model can either be a
mechanistic model that makes use of known relations between monitored variables to es-
timate non-monitored variables, or models developed using multivariate methods (Mali
and Laskar, 2020), or neural networks (Pisa et al., 2019) and other machine learning tech-
niques such as decision trees or k-Nearest neighbor (del Olmo et al., 2019).

This study relies on known relations between the variables in use, further described in
the following sections. All simulations were done using an MBR model of Henriksdal
WWTP based on the Benchmark Simulation Model no. 2 (BSM2) and its underlying
models with minor modifications.

2.1 Dynamic mass balance

Two of the fundamental laws of physics are that mass and energy can not be destroyed,
they can only transfer into different forms. The mass that is accumulated in a system must
therefore equal the sum of mass entering the system and the mass that is produced within
the system, minus the mass that leaves the system and that is consumed within the system:

Accumulation = Inflow + Production - Consumption - Outflow

In terms of the bioreactor, the mass balance is simplified by assuming that the outgoing
mass is zero (no suspended solids in the effluent, SSeff = 0), and that the waste sludge
flow rate is much smaller than the return sludge flow rate (QWAS << QRAS) and therefore
negligible. The growth and decay are assumed to compensate for each other and can
thereby be neglected. The mass balance can then be simplified to only cover the bioreactor
(dashed line in Figure 2).
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Figure 2. Illustration of the system over which the mass balance was defined.

The change in mass in the bioreactor, d(SSbio ⇤ Vbio)/dt, is given by (1)

d(SSbio ⇤ Vbio)

dt
= QbioSSin +QRASSSRAS �QtotSSbio (1)

where SSin is assumed to be zero. Applying the product rule for derivatives on (1) yields

d(SSbio ⇤ Vbio)

dt
= Vbio

dSSbio

dt
+ SSbio

dVbio

dt (2)

Equations (1) and (2) give (with the assumption that SSin = 0)

QRASSSRAS �QtotSSbio = Vbio
dSSbio

dt
+ SSbio

dVbio

dt (3)

where the suspended solids concentration in the bioreactor is the mixed liqour suspended
solids concentration MLSS (SSRAS = MLSS).

Furthermore, the change in volume is defined by the differences in incoming and outgoing
flow rates,

dVbio

dt
= Qbio +QRAS �Qtot (4)

Using (4) in (2) and solving for dMLSS/dt results in

dMLSS

dt
=

1

Vbio
(QRASSSRAS � (Qbio +QRAS)MLSS)

(5)

where Qbio, MLSS and SSRAS are observations; Qbio is measured online, and MLSS

and SSRAS are measured online and with lab-analyses.
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2.2 Static mass balance

A static mass balance can be derived by solving (4) and (5) at steady-state,

dVbio

dt
=0 = Qbio +QRAS �Qtot ) Qtot = Qbio +QRAS

dMLSS

dt
=0 = QRASSSRAS � (Qbio +QRAS)MLSS

0 = QRAS(SSRAS �MLSS)�QbioMLSS

QRAS(SSRAS �MLSS) = QbioMLSS

) QRAS = QSMB =
QbioMLSS

SSRAS �MLSS (6)

where Qbio, MLSS and SSRAS are known parameters. Qbio is measured online, and
MLSS and SSRAS are measured online and with lab-analyses.

2.3 Function of the incoming flow and the water level in the bioreactor

The water exits the bioreactor over a rectangular weir. The flow rate exiting the bioreactor,
Qtot, can be estimated using Poleni’s formula for rectangular weirs without contraction
(Persson et al., 2014):

Qtot =
2µL

p
2g (hbio � href )

3/2

3 (7)

where µ is a constant that accounts for frictions loss when the water exits the weir, L is
the length of the weir, g is the gravitational constant, href is the height from the bottom
of the tank to the crest of the weir, and hbio is the measured water level in the bioreactor
(fig. 3). All variables are known.

Figure 3. Illustration of the water exiting the bioreactor over a rectangular weir.

With the use of (7), (4), and simple geometry, it is possible to derive an expression for
QRAS as a function of h,
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dVbio

dt
= Qbio +QRAS �Qtot

dVbio

dt
= Abio

dhbio

dt
= Qbio +QRAS � 2µL

p
2g (hbio � href )

3/2

3

)QRAS = Qweir =
2µL

p
2g (hbio � href )

3/2

3
�Qbio + Abio

dhbio

dt (8)

2.4 Pump model

The behaviour of a pump can be described using its pump curve and system curve. The
pump curve shows the relationship between the pressure and flow a pump generates at a
certain frequency. The system curve contains two parts: the static head and frictional head
loss. The intercept between the pump curve and the system curve gives the operational
point from which the pumped flow and generated pressure can be retrieved. To change
the flow rate, the operational point has to be moved which can either be done by changing
the frequency or to change the static head or frictional head loss (Karassik et al., 2007).

The relation between the number of revolutions (n), flow rate (Q), pressure head (H),
and required power (P ) are described with the affinity rules (given that the diameter of
the impeller is kept constant):

Q1

Q2
=

n1

n2

H1

H2
=

✓
n1

n2

◆2

P1

P2
=

✓
n1

n2

◆3

(9)

If the flow rate, pressure, and power are known for a given n, these relations can be used
to calculate Q, H and P for any n.

The system curve changes as the static head changes. The RAS pumps are located in a
tank where the water level changes, which in turn changes the static head. Information
about the pumps was used to fit a polynomial to the system curve. The frictional head loss
was neglected. The system curves were assumed to only offset from each other depending
on the water level, no change in shape.

The pump curves were assumed to be linear around the intercept with the system curve.
Combining the polynomial for the system curve and the linear relationship describing
parts of the pump curves give a second-order polynomial, which can be solved to find
any flow rate for any static head and frequency. This method was previously used and
implemented by Saagi et al. (2016). It was later revised for the Henriksdal WWTP by
Blomstrand and Jemander (2017). Their work was used as a basis for the pump model.
The pumps installed at Henriksdal WWTP are Flygt PL 7040 pumps. The pumps were
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installed and tested during the autumn of 2019.

The RAS flow rate is possible to estimate using data from the plant. Required data is
the water level in the tank where the RAS pumps are located, hRAS , and the number of
revolutions of the eight pumps, ni. The available data from the plant is the frequency of
the pumps which is related to the number of revolutions per minute,

ni =
120fi
p

(10)

where fi is the frequency in Hz and p is the number of poles of the electrical drive.

2.5 Estimating the RAS flow rate

The median (11) and the mean (12) the of the four different calculations were calculated
and used as a first combined estimate of the RAS flow rate,

Qmedian = median(Qweir, QSMB, QDMB, Qpump) (11)

Qmean =
Qweir +QSMB +QDMB +Qpump

4
. (12)

The median of four values was calculated as the average of the two middle values. Other
methods such as using the maximum, minimum or a weighted average of the four flow
rate estimates could have been used, but without knowledge about the true RAS flow rate
it was deemed suitable to use the mean and median as a first test.

3 Default scenario

The four different calculations were implemented in the MBR model. A simulation of 21
days was run without disturbances in any input variable. The different estimates of the
RAS flow were compared. The four calculations were deemed to be close enough (Figure
4). Only seven days are shown in Figure 4 for visibility purposes. The cyclic pattern was
the same throughout the whole simulation period.

The results from this simulation were regarded as the ideal or default scenario to which
the succeeding simulations were compared.
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Figure 4. The simulated RAS flow rate using four different methods, and the final esti-
mate of QRAS .

4 Adding disturbances to the input signals

To analyse how the soft sensor responds to disturbances in the input variables white noise
with different standard deviations to match historic data was added to the signals. His-
toric data was analysed to find the average and standard deviation for each signal. Periods
without abrupt changes were chosen for this purpose. The standard deviations used are
presented in Table 1.

Table 1. Summary of the historic data set.

Signal Mean Standard deviation Standard deviation / Mean

Qbio 0.82 0.18 m3/s 22%
hbio 1.0 0.030 m 3%
MLSS 5 768 419 g/m3 7%
SSRAS 8 013 604 g/m3 8%
hRAS 1.2 0.18 m 15%

The output from the four different calculations of the RAS flow rate without noise in any
input variables was regarded as the ideal case. Disturbances were first added to one signal
at a time. The residuals were calculated and analyzed with regard to mean and standard
deviation (Table 2). Unsurprisingly, disturbances in hbio impacts the flow calculated over
the weir. The water level is also used in the dynamic mass balance (as the change in the
bioreactor volume) but it was only slightly impacted by the disturbances. The static mass
balance and the pump model are independent of the level over the weir and were therefore
not affected.
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The dynamic mass balance was more affected than the static mass balance when distur-
bances were added to MLSS. The fluctuations in MLSS propagates in the dynamic mass
balance as it takes into account the derivative of MLSS, which the static mass balance
does not. Disturbances in SSRAS also affect both mass balances. The disturbances in
Qbio affect both mass balances (static and dynamic) and the flow calculated from the weir.
The pump model was unaffected as it does not account for the flow in to the bioreactor.
The pump model was only affected by disturbances in the water level in the RAS pump
tank (hRAS). The input variable is only used in the pump model and therefore it was the
only calculation that was affected when disturbances were introduced.

Table 2. Standard deviation of the residuals for the four different flow calculations when
disturbances were added to one input variable at a time.

RAS flow Qbio hbio MLSS SSRAS hRAS

Qweir 0.18 1.7 - - -
QSMB 0.64 - 0.35 0.40 -
QDMB 0.64 0.000013 0.42 0.40 -
Qpump - - - - 0.012
Qmedian 0.32 0.020 0.18 0.21 0.0042
Qmean 0.28 0.42 0.19 0.20 0.0030

Disturbances were then added to all signals to evaluate the response of each calculation
when exposed to multiple disturbances. The disturbances were once again made up by
random numbers with mean 0 and standard deviations as in Table 1. A simulation of 21
days was run. The output is shown in Figure 5. Only seven days are shown for visibility
purposes.

Figure 5. A three day period from a 21-day simulation with disturbances added to all
input variables.
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The mean and standard deviations of the residuals were calculated (Table 3, Figure 6).
When adding multiple disturbances, the residuals are quite large for all estimates except
the pump model. The residuals of Qweir mostly stems from the disturbances in hbio,
whereas they are more likely explained by a combination of disturbances in several input
variables (Qbio, MLSS, SSRAS) for the mass balances (SMB, DBM).

Figure 6. Residuals when adding disturbances to one variable at a time. Note the different
ranges on the y-axis. The weir calculation is most sensitive to disturbances in hbio and
the dynamic mass balance (DMB) is sensitive to disturbances in MLSS. When adding
disturbances to all input variables at the same time, the residuals are greatest for the weir
calculation followed by the two mass balance models. Median and mean refers to the
median and mean as equations (11) and (12).
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Table 3. Residuals when adding multiple disturbances.

QRAS Mean Std. dev. Average flow Std. dev. / Average flow

m3/s m3/s m3/s
Qweir 0.080 1.7 3.76 46%
QSMB 0.036 0.88 3.79 23%
QDMB 0.037 0.91 3.79 24%
Qpump 0.00020 0.012 3.69 0.33%
Qmedian 0.045 0.72 3.77 19%
Qmean 0.038 0.73 3.76 19%

The residuals all have means close to zero but the standard deviations are in general quite
large (Table 3). The weir calculation is most sensitive to disturbances. The standard
deviation of the residuals is approximately 46% of the average flow rate calculated over
the weir. This is also seen in Figure 5 where the output is fluctuating significantly. It
should however be noted that none of the signals were filtered since the purpose was to
examine the effect of disturbances. A more realistic approach (to later be implemented)
would be to filter the input data to reduce the fluctuations.

5 Using historic plant data

Data from the MBR line at Henriksdal WWTP were extracted for the period 2021-06-09
- 2021-06-30. The data set included; the incoming flow rate (Qbio), water level in the
bioreactor (hbio), MLSS in the bioreactor (MLSS) and SS in the RAS flow rate (SSRAS).
The frequency of the RAS pumps was not accessible at the time. The pump model de-
scribed in this work was therefore not tested with historic data. Instead, the RAS flow
rate calculated in the control system (also based on pump characteristics and frequency)
was used for comparison (Q⇤

pump). This model does however not account for the change
of water level in the RAS pump tank. The used data is shown in Figure 7
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Figure 7. The raw data used in the soft sensor. Q⇤
pump is the RAS flow rate calculated in

the control system.

The extracted data was run through the soft sensor. The input signals were filtered by ap-
plying a moving average of 3 hours. The results are shown in Figure 8. What is obvious is
that the two mass balance models give very similar results. Qweir and Q

⇤
pump are consis-

tently higher than the mass balance based calculations. Towards the end of the examined
period there is an almost constant offset between the two groups.

When comparing Qweir and Q
⇤
pump it can be concluded that they are quite similar to each

other. An interesting notion is that Qweir is lower than Q
⇤
pump from day 3 to 9, then follows

a period where they are approximately equal but where the flow peaks are higher in Qweir

than in Q
⇤
pump. This could indicate that Qweir is more sensitive to variations in the input

variables than Q
⇤
pump, which coincides with the results from the sensitivity analysis. It is

however difficult to jump into conclusions based on this since there is no ’true’ flow rate
to validate with and no knowledge on whether all sensors were fully functional during
this period of time.
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Figure 8. Simulation with filtered historic input data. Q⇤
pump is the RAS flow rate calcu-

lated in the control system.

To summarize the results a bit more the maximum and the minimum at each time step was
plotted together with the median flow rate (Figure 9). As is seen, the results cover quite a
large span which makes it difficult to estimate one ”true” RAS flow rate.

Figure 9. Minimum and maximum flow at each time step, together with the median and
mean, shows the large spread in the four different estimates.

Out of curiosity, the ratios between the two mass balance models and the pump flow rate
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from the control system (which was less prone to disturbances than Qweir) were calculated
and plotted. The ratios are around 0.6 throughout most of the period (QSMB/Qpump*:
mean = 0.59, standard deviation = 0.067, QDMB/Qpump*: mean = 0.59, standard devia-
tion = 0.069). An explanation to this rather constant offset is yet to be found.

Figure 10. The ratios between the two mass balance models and the calculated pump
flow rate from the control system.

6 Discussion

This simulation study investigated whether it was possible or not to create a soft sensor
for the return activated sludge flow rate (RAS flow) at Henriksdals WWTP. Four differ-
ent models were used, evaluated and compared to each other, first using simulated data
with and without disturbances, and later with real historic data from the treatment plant.
The weir calculation was most sensitive to disturbances when using simulated data. This
could explain why it deviates from the more stable pump model in an irregular way when
feeding the soft sensor with historic data. The weir model is apparently quite sensitive to
changes in water level. It was also noted that the model was sensitive to the choice of the
model parameters (href , L and µ) but it was not quantified. A more extensive uncertainty
analysis and sensitivity analysis should be performed on the four different models indi-
vidually so as to estimate how large uncertainties one could expect from each calculation.
That might provide insight to what results to trust.

Based on the results in this study it is impossible to decide on a ’true’ RAS flow rate at
Henriksdals WWTP. Figure 9 shows the large range between the maximum and minimum
estimate at all time steps but it is not possible to determine which flow is most or least ac-
curate. Since there is no flow rate available to validate the calculations one can only guess
which model is most accurate. An uncertainty analysis could help to prioritize between
the four estimates.
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There is a quite large offset between the mass balance models and the pump flow rate from
the control system but they all follow the same general pattern. Looking at the difference
between the mass balances and the pump flow there almost seems to be a constant offset.
The mass balances equals approximately 60% of the pump flow. An explanation to this
has not been found. It could be that the pump model overestimates the RAS flow. The
pump model assumes that the pump has a certain efficiency which might not coincide with
reality. The pump model in the control system (the one that was used with historic data)
does not account for the water level in the pump tank which also might affect the results.
To what extent is not known and will probably not explain the whole offset though. Using
this as an explanation would imply that Qweir is incorrect but tuning the model parameters
is possible if a ’true’ flow rate was determined. One could on the other hand argue that
the weir and pump flows are correct and that the mass balance models underestimate the
flow rate. Both mass balance models are simplifications of reality and based on assump-
tions. The MLSS and SSRAS sensors could be faulty or there might be unknown flows or
interactions that was not accounted for in this study.

The decision to use the median and mean flow as QRAS may not be the best approach
for estimating the flow rate. It could be considered to add weights to the different flows,
but again, this is difficult, if not impossible, to determine without knowing what data to
calibrate against.

Although this study did not result in a comprehensive way of estimating the RAS flow
rate, the method could be used further for fault detection. If this was to be regarded as the
’default’ case - where Q

⇤
pump ⇡ Qweir and QSMB ⇡ QDMB - future estimates could be

evaluated and compared to these.

7 Future research

Based on the results of this study, the following would be valuable to further investigate:

• Perform uncertainty analysis and local and global sensitivity analysis with more ad-
vanced methods to estimate the contribution from each input variable and parameter
in the four different calculations to determine which estimate is least/most sensitive.
Based on this, possibly redefine how the RAS flow rate should be estimated.

• Search for an explanation to the offset between Qpump, Qweir and QSMB, QDMB,
possibly by analysing a longer time period and see if the offset between Qpump and
the mass balance models has been and remains constant.

• Use the different calculations to detect measurement faults in the flows or the input
variables by comparing them to a decided ’true’ flow rate.

• Test the pump model with historic plant data to quantify what influence the change
in water level in the RAS tank has on the flow rate estimate.
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