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1 Introduction 
Automatic control of processes at wastewater treatment plants (WWTPs) is essential to achieve 
optimal treatment while minimizing use of resources such as chemicals and energy. The level of control 
ranges from simple feedback controllers (such as PI controllers which are most widely used today) to 
advanced methods like model predictive control (MPC). Advanced control such as MPC, where 
optimization algorithms and model predictions are used to solve control problems (Figure 1), have 
great potential since it allows control on a variety of objectives (e.g., operational costs, energy use, 
greenhouse gas emissions) and can consider complex systems that are hard to optimize with simpler 
methods (Åmand et al., 2013; Stare et al., 2007). It is possible to impose constraints on both the states 
and the control signal which makes it a powerful tool. The predictive controller can be used to directly 
control the process, or in a hierarchical control structure where a high level MPC feeds setpoints to 
controllers at lower level (e.g. Duzinkiewicz et al., 2009; Vega et al., 2014).  

 

Figure 1. Schematic illustration of the concept of MPC. A process model and an optimization algorithm are used to decide 
optimal setpoints to control the process. 

Compared to other process industries, such as chemical and pulp- and paper industries, the 
development of automatic control has been slower in the wastewater treatment sector (Olsson, 2008) 
and few examples of advanced methods are seen at WWTPs today. This could be attributed to several 
factors, e.g.: i) the influent wastewater (equivalent to raw material in other process industries) cannot 
be controlled in volume and quality, causing large disturbances to the processes; ii) the harsh 
environment at WWTPs with high concentrations of organic material, nutrients and bacteria makes 
measurements with sensors error prone and maintenance heavy; iii) economic incentives are lacking 
compared to other industries; iv) WWTP biological processes are highly non-linear and corresponding 
model based control strategies are computationally demanding. 

In line with the ongoing digital transformation, computational capacity increases fast. At the same time 
new methods for data management and modelling are being developed that allow better control of 
data quality from sensors (Samuelsson, 2021). This means that methods such as MPC, which have great 
potential to increase sustainably operation of WWTPS, are becoming increasingly applicable in 
practice. This literature review aims to investigate previously used MPC applications at WWTPs with 
focus on different methods and benefits. 
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2 Method 
Two different strings of words to be searched on Web of Science were defined: “model predictive 
control + wastewater treatment” and “model based control + wastewater treatment”. No time range 
or other filtration was applied. The newly adopted terms for WWTPs (i.e., resource recovery facilities) 
was not included as the term is fairly new and it was assumed that most authors include the old 
denotation among the keywords.  

The resulting articles were sorted on date (newest to oldest) and most citations, from where the first 
100 articles from each sortation was exported. Articles that did not contain “model predictive control” 
or “model based control” in its title or abstract was discarded. The remaining articles were read and 
categorized based on: 

• Simulation / real plant case study; 
• Type of models used in the predictive controller; 
• Controlled variables; 
• Manipulated variables 

 

3 A brief introduction to wastewater treatment  
The WWTP are designed to treat the wastewater in several steps, each specialized to reduce organic 
matter, nitrogen, phosphorous, and micropollutants such as pharmaceuticals to prevent them from 
causing environmental problems (e.g. eutrophication and oxygen depletion) in the receiving water 
body and its ecosystem. Mechanical, chemical, biochemical and biological processes are used 
depending on the plant’s layout, incoming loads, and effluent requirements. Phosphorous can either 
be reduced by precipitation and filtration/sedimentation, or biologically, where the latter is less 
common. Nitrogen and organic matter are reduced by biological processes and 
filtration/sedimentation (la Cour Jansen et al., 2019).  

The processes of importance when reducing nitrogen is the nitrification and denitrification processes. 
In the nitrification process, ammonia and ammonium nitrogen (NH3-N+NH4-N = NHx-N) is oxidized to 
form nitrite (NO2-N) and nitrate (NO3-N) nitrogen, often measured by their summed concentration 
NOx-N, in sequence by two types of autotrophic bacteria which requires oxygen. The dissolved oxygen 
(DO) concentration in the aerated reactors is important for the growth of autotrophic bacteria. Too 
low DO concentration will inhibit the growth and may also cause the growth of filamentous bacteria 
which can lead to foaming and deterioration of the sludge settleability (bulking), resulting in higher 
concentrations of biomass in the effluent and may risk emissions of nitrous oxide. Too high DO 
concentration is undesirable as it requires a lot of energy with only marginal improvement of the 
treatment (Kampschreur et al., 2009). In the denitrification process, heterotrophic bacteria use NO2 or 
NO3 as an electron acceptor in their metabolism which reduces NO2 and NO3 to nitrogen gas (N2) and 
both are therefore important for the nitrogen removal (la Cour Jansen et al., 2019). The aeration is a 
costly and energy consuming part of the treatment process, and is of great importance for the 
treatment results, which both are incentives to optimize it (Åmand et al., 2013). This may explain the 
vast amount of research done on aeration control.  
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4 Simulation studies 
Simulation is an effective tool to evaluate scenarios faster, cheaper and safer than with full scale test. 
Many simulation studies have been carried out over the years, in most studies the objective is to 
reduce the overall cost and energy consumption and improve the effluent quality by controlling the 
aeration at the WWTP. The Benchmark Simulation Models (BSM1, BSM1_LT and BSM2) and its 
underlying models (K. V. Gernaey et al., 2014) are commonly used as a simulation tool where the MPC 
algorithms are evaluated. Often compared metrics are the operational costs index (OCI) and effluent 
quality index (EQI), as computed in the BSM system. Many studies use the control loops in BSM1 with 
DO controlled by adjustment of aeration (through the oxygen transfer coefficient KLa) and NOx-N by 
control of the internal recycle rate. 

Wastewater models can generally be divided in two main groups: mechanistical and data-driven 
models. Mechanistical models, like the BSM, use physical and biochemical principles as a foundation 
to formulate model equations. Data is needed to calibrate the model to current conditions, but in 
comparison with data-driven models, the amount of data needed is often less. Data-driven models are 
derived using statistical methods to detect patterns and trends within a dataset. An important 
difference between the two groups is that the results from a mechanistical model are possible to 
interpret physically, while it is not always possible when it comes to data-driven models. Combination 
models, i.e. hybrid models, make use of the benefits from both types of models. The foundation of a 
hybrid model may be mechanistical, but specific functions or reactions are estimated from data 
(Gernaey et al., 2014). The following chapters are divided based on models used in the predictive 
controller.  

4.1 Full or simplified mechanistic models 
Biological wastewater treatment processes are in general non-linear. However, its dynamics can often 
be described by a linear model around an operating point. Using the prediction-error minimization 
method, Tejaswini et al. (2020) was able to identify a linear state-space model of the relation between 
DO, NOx-N and the internal recycle flow and KLa. The developed MPC was compared to traditional PI 
controllers as well as a fuzzy logic controller and evaluated on the OCI and EQI, which were both 
improved with the MPC and the fuzzy logic controller.  Holenda et al. (2008) developed a state-space 
model by linearizing the aeration process in the ASM1 model, which was used in a MPC for controlling 
the DO concentration. Aside KLa, all other inputs to the reactor were regarded as unmeasured 
disturbances. The results indicate that that the controller accurately can follow rapid changes in the 
DO setpoint. The error was reduced with a shorter prediction horizon but with the tradeoff of 
increased overshoot.   

Revollar et al. (2017) used a simplified version of BSM1, reduced to one anoxic and one aerated tank 
as well as only including four state variables and three processes, for MPC to optimize operational 
costs in the full BSM1 model. A penalty term was included for effluent NHx-N to avoid excessively high 
ammonia concentration. The economic MPC showed increased benefit both for the standard PI control 
scheme in BSM1 as well as an MPC with only focus on setpoint tracking. Zhang et al. (2019) used the 
full BSM1 as well as a decomposed version with two separate subsystems to minimize the OCI and EQI 
of the BSM1. The decomposed version achieved considerably better computational efficiency while 
the control performance was slightly decreased. Boruah & Roy (2019) also used the full BSM1 for MPC 
to optimize operational costs, but used triggering conditions to update the optimization problem 
instead of running the optimization at each controller time step. This resulted in nearly 50% reduction 
in computation time while improving both EQI and OCI compared to the default PI controller scheme. 
In Francisco et al. (2011) a linearized version of BSM1 was used for MPC of DO and NOx-N which 
improved control of disturbances compared to the default control scheme. Francisco et al. (2015) used 
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the full BSM1 with self-optimizing algorithms for MPC for steady state conditions, but since the method 
assumes steady state the performance was not improved from the default case under dynamic 
conditions. Moliner-Heredia et al. (2019) used a simplified linear model with a nonlinear term (so called 
Wiener model) for NHx-N prediction in combination with a influent flow prediction model and dynamic 
energy tariffs to optimize cost and evaluated on the full BSM1 system. Significant cost reductions were 
seen compared to default controls. Attar & Haugen (2017) used MPC to optimize methane production 
in a biogas reactor, using a simplified version of the ADM1 model and the input flow rate as 
manipulated variable, in a pure simulation study.  

4.2 Data driven models 
4.2.1 Artificial neural networks  
Artificial neural network models (ANN) are purely data-driven models that consist of several layers of 
linear regression models and nonlinear activation functions. ANNs can be used to model non-linear 
and complex relationships, like the processes within a WWTP, and make predictions. Caraman et al. 
(2007) used a predictive controller with a neural network as the internal model. The MPC was designed 
to control the DO concentration by manipulating the dilution rate (air flow divided by volume). The 
control scheme was evaluated in BSM1. Results showed that the predictions made by the MPC 
followed the dynamics of the simulated WWTP and that the controller was able to control the DO 
concentration. Han et al. (2020) developed a self-organizing radial basis function (RBF) neural network 
MPC (SORBF-MPC) method to control the DO concentration in an activated sludge WWTP. The SORBF-
MPC was applied to the BSM1 WWTP to maintain a specific DO concentration in the last aeration tank, 
while manipulating the internal flow recirculation and KLa. The performance of the control system was 
evaluated on effluent quality and aeration energy consumption. A comparison was also made with 
other control strategies. The results show that the aeration energy consumption was lowered by 8.4% 
compared to the default control scheme and that the proposed strategy gives accurate control of the 
DO concentration, as well as better quality of the effluent. Han et al. (2020) extended their work and 
created a four-layer adaptive fuzzy neural network (ANFF), including a RBF layer, to approximate 
nonlinearities in a WWTP. The developed ANFF updates the model parameters using an adaptive 
learning rate. The optimization problem was solved using a gradient method which decreased the 
computational cost. The proposed method was applied to BSM2 to control the DO concentration by 
manipulating the internal recycle rate and KLa. Compared to the previously proposed SORBF-MPC, the 
effluent quality was improved, and the aeration energy consumption was decreased. Sadeghassadi et 
al. (2018) used a neural network ARX model to predict DO and NOx-N concentrations one controller 
step ahead, combining several predictions in series to gain longer prediction horizon. They used this 
for MPC of the DO and NOx-N setpoints to optimize OCI and EQI in BSM1 which improved OCI as well 
EQI. 

4.2.2 Dynamic matrix control 
Dynamic matrix control (DMC) is one of the earliest examples of MPC, and is based on a model of the 
step response of the system (Camacho & Bordons, 1999). It can be used with measurable disturbances 
as input to the system (i.e., feedforward terms), and the method has had industrial success related to 
its applicability in multivariate systems. Shen et al. (2008) compared quadratic DMC (QDMC), QDMC 
with feed-forward, and nonlinear MPC to control the effluent quality (NHx-N, TN, TSS, BOD5 and COD) 
by manipulating the internal recycle, external recycle, waste activated sludge flow, carbon source flow 
rate and kLa in the aeration tanks in presence of disturbances in the incoming flow rate. The nonlinear 
MPC handled disturbances best, while still having acceptable energy consumption. Shen et al. (2009) 
later compared linear DMC, QDMC and nonlinear MPC, all with feedforward terms of influent flow rate 
or NHx-N concentration, for control of effluent quality (NHx-N, TN, TSS, BOD5 and COD) in the BSM1 
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system. They concluded that nonlinear MCP only gave small benefits over linear DMC and quadratic 
DMC and that performance was highest with combined influent NHx-N and flow rate as feedforward 
terms but that the NHx-N concentration had the highest impact. In reality, influent flow rate is often 
measured while NHx-N is not. The control worked well under steady influent conditions but 
deteriorated under dynamic conditions with increased energy consumption. 

4.3 Fuzzy control 
Fuzzy control is not a MPC method per se but used in conjunction with MPC in many cases and 
therefore given a separate section here. The method is based on logic expressions, but unlike Boolean 
logic (true or false) fuzzy logic is based on continuous function expressions with values between 0 and 
1, which make them less sharp than Boolean logic (Åström & Hägglund, 2006). Compared to other 
advanced methods for control it has the benefit that the rule-based expressions can be readily 
interpreted by humans in the control room. Tejaswini et al. (2020) implemented a hierarchical control 
scheme with fuzzy control or linear MPC at the high level (effluent NHx-N) and fractional PI-controllers 
at the low level (DO and NOx-N). Fuzzy control was found more efficient that linear MPC and performed 
better for EQI during storm conditions, while linear MCP performed better regarding OCI during storm 
conditions. Santín et al. (2014) used fuzzy control for high level objectives (DO setpoint, based on 
effluent NHx-N) while using a continuous time state space model feedforward MPC for low level control 
(DO and NOx-N concentration). They reported substantial improvement in setpoint tracking at 
different conditions compared to PI control, as well as significant reduction in EQI and OCI for the 
combined fuzzy control and MPC. Santín et al. (2015) later presented a two-level hierarchical control 
structure to improve effluent quality and lower operational costs, evaluated as EQI and OCI in BSM1. 
The high-level control layer consisted of one fuzzy controller that feed DO setpoints to the low-level 
control layer, and two fuzzy controllers that eliminates violations of total nitrogen and NHx-N effluent 
requirements respectively. The low-level control layer consisted of three MPCs with feedforward 
compensation used to control NOx-N and DO. Compared to the default control strategy of BSM1, an 
improvement in the number of violations of effluent requirements as well as the EQI was reported, 
but only with a slightly lower OCI.  

 

5 Real case studies 
Few examples of MPC used at real WWTPs are found in the literature. The examples that have been 
found in the literature are presented below. 

As with the simulation studies presented above, most articles focus on aeration control. O’Brien (2011) 
implemented MPC on a WWTP in England. They used UV based BOD sensors for feedforward control 
with an incremental ARX model for MPC of the DO profile over the basin by adjusting the aeration rate 
and achieved 25 % reduction in power usage as well as smoother operation of the plant. Ekster et al. 
(2019) used adaptive heuristics models for control of DO and model based sludge retention time (SRT) 
control at the Chico WWTP (California, USA). It was included in a cascade control scheme with 
feedforward and feedback control of NHx-N which decides DO setpoints for different zones. The 
authors report aeration energy savings of 47 % compared to the previous DO control scheme, as well 
as increased process stability with decreased bulking.  

Han & Qiao (2014) used self-organizing radial basis function neural networks for MPC of a nitrifying 
pilot plant with pre-denitrification for setpoint tracking for DO and NOx-N, with air flow and internal 
recycle flow as manipulated variables. Good setpoint tracking was achieved in this setup, but a 
drawback was that optimization of the setpoints was not possible. Bernardelli et al. (2020) combined 
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machine learning with fuzzy techniques (Artificial Neuro-Fuzzy Inference System) for control of effluent 
TN as well as energy consumption, also by manipulation of aeration rate and internal recycle flow rate 
but also including set point determination. They measured DO, ORP, T, NHx-N and NOx-N in the 
aeration tank as well as Ntot in the effluent as input to the controller. They alternated between MPC 
and regular control on a weekly basis and concluded that the MPC achieved better effluent quality and 
energy savings. 

Stentoft et al. (2019) developed a hybrid data driven/mechanistic model based on stochastic 
differential equations which incorporates parts of the well-established ASM1 model (see Henze et al. 
(2000)). The model was used to predict NHx-N and NOx-N in an intermittent aeration activated sludge 
process in Denmark and showed excellent predictive quality, although it was not used for control. The 
methodology was extended in Stentoft et al. (2021) to include dynamic electricity prices and 
greenhouse gas emissions to allow control of aeration time over a day. The article was only a proof of 
concept, the model was not used for control of the plant, but predicted significant cost savings or 
lowered greenhouse gas emissions depending on chosen evaluation criteria.   

 

6 Outlook and conclusions 
MPC has great potential to help reduce energy usage, greenhouse gas emissions and costs for WWTPs, 
though most studies of the use of MPC found in the literature are still only tested in ideal simulated 
environments. This presents a problem in evaluating the efficacy of the methods since the (very) real 
problems that occur at WWTPs, e.g. faulty data and equipment failure, are often neglected in 
simulation studies but must be taken into account for proper evaluation of benefits and robustness of 
the methods. This also means that there are many opportunities for more research in this area as more 
case studies of real systems are needed. While predictive power and computational demand of the 
models has been a problem in the past, recent additions (Bernardelli et al., 2020; Stentoft et al., 2019) 
show very promising results in these regards. More research is needed to evaluate where MPC is most 
efficient. Should it only be used as a high-level controller in a cascade scheme (e.g. to decide set points) 
or is it efficient also as a low-level controller? During evaluation of the benefits of MPC increased costs 
for additional sensors and maintenance should also be included. The interpretability of the model 
structure can also be important to achieve operator trust, which is an important part of the 
implementation process. 

Efforts to improve wastewater treatment are often focused at optimization of the WWTP. However, 
there is also potential to improve the effluent quality and the operation of WWTPs by measures in the 
sewer network. MPC could facilitate the control of the whole urban water cycle. With more advanced 
methods on both the modelling and the control side, in combination with an increase in computational 
capacity as well as higher demands on the WWTPs, MPC can help to improve the control of both the 
sewer network and WWTP. In a recent study Sun et al. (2020) used MPC for a combined sewer system 
to mitigate the environmental impact of combined sewer overflows (CSOs). A discrete-time state-
space model was used in the MPC. The multi-objective cost function accounted for minimization of 
CSO volume, maximation of the usage of the WWTP, control smoothness, and minimization of the 
pollutant load to the environment. In comparison with rule-based local control the proposed method 
can reduce the CSO volume and pollutant load to the environment. Integrating the WWTP capacity in 
the control strategy reduced the CSO volume which indicates that there are possibilities to find a better 
balance between the sewer network and the WWTP by considering the whole urban water cycle. 
Predicting flows to control inlets pump is also a possible area of use for MPC. Aakre Haugen (2018) 
implemented a simple MPC to control the pumps at a simulated WWTP. The system consisted of a long 
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tunnel that discharged in an inlet basin from where the wastewater was pumped to the WWTP. The 
model used in the predictive controller was based on a simple mass balance of the inlet basin and was 
used to control the pumps. The results were promising, yet only tested in a simulated system. Ongoing 
project Future City Flow aims to develop a decision support system to help cities control wastewater 
flows and reduce the risk of CSOs. Implementation of full MPC will be done in the final stage of the 
project (Valverde-Pérez et al., 2021).  

Another possible application of MPC at WWTPs is for control of the sludge dewatering. The process is 
often hard to control as the sludge quality differs depending on current operation and conditions. It is 
also a process where there are economic incitements for optimization as both the flocculation 
chemical consumption and the amount of dewatered sludge (and subsequent transportation needs) 
are costly. The dewatering unit and the sludge flow are difficult to model mechanistically and have 
therefore not been given much attention. Recent advances in e.g. machine learning and other data 
driven technologies opens up possibilities to develop accurate models of the dewatering units. As 
accurate models are important for MPC, improvement in the modelling of this part of the WWTP may 
create opportunities to also create more sophisticated control strategies. 
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