4.7 Conclusions 111

4.7 Conclusions

In the design of user interfaces, three elements have to be considered that
ultimately dictate how a solution will look like:

e the user
* the process
* the way work is (should be) accomplished

The user, his cognitive capabilities, the process, its structure, the work task and
how unexpected situations should be handled are all elements that must be
considered in the design of an user interface. There are however few ways to
model them. Formal methods and engineering equations can of course be used in
the description of the technical process; for the other components the analysis will
in most cases be formulated in plain language on paper. The analysis fulfils two
purposes: it provides a basis to develop and evaluate the design and it gives the
designer of the user interface the opportunity to get insight into the problem and
its possible solutions.

It is very important that all components of the system user - interface - process -
goal match each other in terms of type and quantity of information transferred,
speed, its comprehensibility, etc. Many existing systems are not easily accepted or
led to problems in their operations because of a mismatch somewhere in the
chain between user and goal.

In this Chapter we have examined several issues that can be considered in the
definition of the "external" interface, with special attention to the presentation of
information, its coding, and the aspect of commands. Three important general
principles that can guide the development of a design are simplicity, visibility, and
consistency. In addition, in the design of user interfaces must also be considered
"indirect" aspects like technical documentation, necessity for training, support,
openness for the users' points of view in the revision or the upgrade of a design,
and many more. Ultimately, it is the combination of all these factors that
determines the success - and usability - of an interface.

110 4 Guidelines for the Practical Realisation of the User Interface

of log files is not too expensive and is quite exact. Notes taken by an external
observer are the cheapest method and the one easiest to evaluate, but they are
also most prone to errors.

Shneiderman (1987) indicates the following objective criteria for the evaluation of
a computer system and of its user interface:

» execution speed. How long does it take to perform specific tasks ?

* rate of errors by users. How many and what kinds of errors are made in
carrying out the benchmark set of tasks?

* subjective satisfaction. How much did users like using the system?

e time to learn. How long does it take for the typical user to learn the
most important commands?

* retention over time. How well do users maintain their knowledge after
an hour, a day or a week?

Of these goals, speed of performance, rate of errors and satisfaction can be
evaluated after a comparatively short time and therefore make a good choice of
testing benchmarks. The time to learn and retention over time require by their
nature a longer time for evaluation. Therefore, they cannot realistically be
included among the parameters for direct consideration. They could, however,
play an important role in the periodic re-evaluation of products that reach a
larger market and are not limited to one target user group only.

It sounds like a paradox, but the best user interfaces are also the easiest to forget.
The reason is that if they appear to be natural, the user will not have to make any
special effort to memorise them.

So far only few companies have understood the importance of user-conducted
software testing before products are released. The prevailing attitude is to let the
market do the testing. Many companies are not interested in user satisfaction but
rather in getting quick money for their software. What the user does with this
software, 1s not the original company's matter. It is however questionable
whether this "strategy" really pays in the longer run.

4.6 Prototyping and Evaluation 109

interact much more, for example in periodical meetings, while in static design
designers and users are not required - if not altogether discouraged - to meet.

The advantage of the dynamic design is that the final users have a much higher
degree of participation and thus tend to be much more satisfied. Their needs are
better approached, and they know what they are going to get. The disadvantages
of this method are the longer development time and the higher costs. The
outcome of an iterative design process cannot be known in advance, which
represents a risk for a company. But in a certain sense, it can be said that the test
element in the dynamic design is an abbreviated and more direct form for the
tests that later would take place anyhow with the final users. The higher
investment supported by the companies for this initial testing can be offset by
better user acceptance, lower failure rates and thus less after-purchase complaints.

The dynamic design method can also be considered under a different perspective.
The concept of complexity was introduced in Section 3.2, where it was also
reported that - lacking a precise metric - the only practical method to estimate it
is via user tests. In the dynamic design method the users are involved and rate
the system under development by unconsciously following criteria like
complexity, task matching, ease of information transfer from other contexts, etc.
Testing software acceptance directly with the users combines in a practical way
the analysis of different aspects that are difficult to carry out explicitly, and
therefore delivers the type of results that are needed in practical design.

Due to the fact that the evaluation of user software is a process that potentially
has to be repeated several times, it is important that the evaluation method gives
practicable results and is easy and inexpensive to carry out. Among the methods
to evaluate software performance and satisfaction by the users are:

e (Questionnaire

* Analysis of log-files

* Protocols made by an independent observer
* Video collection of material

* Direct questioning

According to Muller-Holz-auf-der-Heide (1991), the video-recorder gives the best
and most exact results, but is also the most expensive method. An offline analysis

108 4 Guidelines for the Practical Realisation of the User Interface

In static design the project specifications and a test plan are written on the base of
the initial requirements. The system software is then developed and modified until
it stands all tests. In this method there is only one feedback loop to check
whether the software is in agreement with the detailed design specifications.

Static design does not show whether the requirements themselves were correct
or failed to address the task and the goal. The only feedback from the final user
reaches the developers usually along a chain consisting in several links and that
typically includes marketing people and the field salespeople responsible for
customer contact. Changes can be incorporated in the product only with major
delays and only if the company decides that they are of interest for several
customers. In case of specific projects developed for one customer only, the
customer usually binds himself to accept the implementation of the initial
requirements while these are still on paper. Any later change would cost him
money. Unfortunately, user satisfaction is never included in the requirements.

An alternate design method is the dynamic design, described among others in
Muller-Holz-auf-der-Heide (1991). The dynamic design includes evaluation and
testing phases as part of the design process itself (Figure 4.7).

Design »| Realisation —» @»
| |

Figure 4.7 The dynamic design method

With this approach, the initial requirements take the form of "set-point values"
rather than direct "control signals". Designers, programmers and final users

4.6 Prototyping and Evaluation 107

Ideally, the number of items in a menu is not too large. With too many items on
the screen, one may have already forgotten the first ones by the time he is
through scanning the list. If a system has a very large number of action paths that
can be followed, a tradeoff must be made between the approximate number of
choices in every menu and the number of levels in the menu hierarchy.

Similar functions in different menus should be connected to the same keys
(conmsistency). A <BREAK> command should always be present, possibly with its
own dedicated key. It should be possible at any moment to interrupt the current
work and go back to the next higher menu level or even to jump to the highest
level (root) menu. It should not be required to go through a series of screens, or
even reply to additional questions, just to leave the current menu.

4.6 Prototyping and Evaluation

The development of computer systems and of their user interfaces can basically
follow two principles: the static and the dynamic (interactive) design.

The static design (Figure 4.6) is the most common software development
method. This method is favoured by software development companies because
each work step is well defined and can be accounted and paid for as soon as it is
completed. The work division helps also divide responsibility among different
people and groups, so that nobody is ever responsible for possible dissatisfaction
when the work is completed.

Design = Realization —»

|

Figure 4.6 The static design method

106 4 Guidelines for the Practical Realisation of the User Interface

use. In Section 3.7 was indicated how a process simulation routine would
enhance a control system. In such a case, "dangerous" commands could be
accepted only after having been run in simulation; only after that the control
system would pass them further to the technical process. This strategy may
however not be applicable for systems where immediate process manipulation is
required.

It is important to have the possibility to stop a computer-controlled actuator or
machine immediately in case of an emergency. In such a situation, nobody would
have the patience to type in an ordered command sequence on a keyboard. A
clearly marked emergency OFF button should be installed within easy reach for
the operator. It is common practice to paint the button red on yellow
background. "OFF" buttons are usually large enough to be operated while
wearing gloves and without need for careful aiming.

It is advisable that help information is available on line. Help should always be
called from the same key, which should be distinct and clearly marked. Modern
systems offer context-related help, that is, they recognize the current situation
(the data or program which is currently active) and offer help related to that
context.

4.5 Menus

The principles of visibility and consistency required in screen and command
design must of course also be followed in the design of menus. In this respect the
following considerations can be made.

To begin with, the menu structure should become quickly clear to the user. Each
menu should be identified by a title/headline, possibly using the same text
indicated as menu selection item one level above.

The items in a menu should be at the same abstraction level: Functions like
"delete character", "print file" and "boot computer system" do not belong to the
same menu. The menu items should not be placed randomly, but follow some
semantic principle. In case no such principle is evident, alphabetic order will serve

as a possible ordering criterion.

4.4 Operator Commands 105

each other. In the VMS operating system for VAX computers this method is
used for all commands and parameters, where the first four letters are sufficient
to uniquely identify any command (commands may also be typed in their entire
length).

In fields where an alphanumeric input is requested, only a few combinations
usually make sense. "FGS" and "OID" are letter combinations as "ON" and
"OFF" are, but they won't be understood by a binary actuator. The possible
alternatives to avoid nonsense input data are: (1) to display the correct values as
part of the background information; (2) to provide a window menu selection of
the possible values; (3) to display a message if the input is not understood by the
system.

The alternative (1) is not feasible when the number of possible commands is
large; it leads easily to cluttering the screen with too much static information.
Alternative (3) may cause delays, depending on how often mistakes are made.
The solution (2) may be the optimal choice; this solution is also directly supported
under window-based interfaces. A new value can be selected either by typing in it
explicitly, or at least some of its characters, or by pointing at it with help of the
arrow keys or the mouse. The selection is then confirmed by an <ENTER>
command or a click on the mouse. One of the command alternatives - the
current, previous, most common or safest one - could also be shown as default
selection for a command. The displayed value is then accepted by the system as
valid unless explicitly changed by the user.

Typing a command from the keyboard requires some thinking and can lead to
errors. It is good to ask for confirmation before execution of sensitive commands,
e.g. with a question of the kind "Do you really want to boot the system
[YES/NO]?" Here might however arise a problem, because once an action is
learned, it is carried out automatically at the skill-based (sensomotoric) level and
without further thinking. The question alone is no guarantee for the exact
intentions of the user. Different strategies might have to be defined.

In some systems potentially dangerous commands are made deliberately difficult
to carry out. This is not a good approach. Special commands (that probably have
to be used only in particular emergencies) can instead be protected with special
passwords. A good control system should be at the same time safe and easy to

104 4 Guidelines for the Practical Realisation of the User Interface

A command defines a reference value for a state; the actual value will later
become equal to the reference value only if control system, actuators, sensors and
physical process all work correctly. It takes some time before a command reaches
the actuators, is executed, and the verification is reported back to the user. Actual
and reference values must be presented in a way clearly identifying them so that
they cannot be confused with each other.

If a system cannot give immediate response to a command, as verification that
the command was accepted and is currently being processed, some kind of partial
response should be displayed. This could e.g. be a message of acknowledgement
or a different highlight of the input data on the screen. The effect of a command
should be immediately evident and there should always be a possibility to reverse
it.

For processes with longer time constants, the first reaction could be a message
from the process computer of the kind: "New temperature set-point value is
66°C. Estimated time to reach set-point is 18 minutes [at 14:28]." This requires
the availability of a simulation routine, as described in Section 3.7.

A hierarchical structure is also possible for commands, in a way similar to the
hierarchical structuring of the management levels in a plant (Section 3.3). At the
lowest level are the input commands for the direct control of the actuators, while
at higher levels complete sequences for the control of complex procedures can be
started. These sequences have the aspect of "batch" or "command" files.

Structuring of commands can also take place on the basis of task analysis
(Section 3.5). In general, commands should be presented in the same context (or
in proximity) of the information that is needed to select the commands
themselves.

Consistency is not only important in the process representation, but plays an
important role also in command input. The commands should be context-
independent and always act in a similar way, irrespective of past activities and
system history.

String commands to be typed explicitly on a keyboard should be as short as
possible, yet not lose their meaning. A good method is to use the first letters of
the command name, provided that different abbreviations are not confused with

4.4 Operator Commands 103

instead implicitly assumed that all information presented on the screen page is
equally important. However, a major problem with all these metrics is that they
focus only on the symbolic aspect of the display, without considering the
semantic information to convey. In other words, they do not address the issue of
the complexity in relation to what information the user really gets from the
display. As an analogy, two different sentences are seldom equally comprehen-
sible, even if they are of the same length and are printed with similar type fonts
and point sizes.

In conclusion, no metric for display complexity that can be applied for a large
class of problems has been proposed so far. If a detailed task description is
available, then Sears' measure of layout appropriateness can be used.

4.4 Operator Commands

The interaction between humans and computers does not only take place from
the machine to the user but also from the user to the machine, when control
tasks have to be carried out. The user enters data by typing in command
sequences on a keyboard, by pushing buttons on a panel or by manipulating a
device like a mouse or a joystick. Some considerations follow here regarding the
design of communication from human to machine, with special regard to controls
typed in via a keyboard.

It is very important for the user to get an immediate "feeling" that a command
has been received and accepted, even if the related processing does not start
immediately. The feeling starts right from the acoustical "click" when a key is
pressed or by seeing a pointer moving on the screen under control of the mouse.
Another example of direct feedback are the tones in a touch-tone dialling phone.
The feedback is intuitive: nobody recognises the dialled number from the tones,
but we get enough information to tell that all the numbers were dialled and
whether a finger slip let a number be dialled twice. If nothing seems to happen
after having pressed the <RETURN> or <ENTER> key because of long
response times, one may wonder whether the system operates correctly.

102 4 Guidelines for the Practical Realisation of the User Interface

f Water Treatment Plant Chemical Precipitation Section [24] 14:18:04 \

PUMP 105 PROCESS WATER STATE=ON ALARM=NO OVERHEAT=NO

PUMP 118 WASHWATER STATE=ON ALARM=NO OVERHEAT=NO

PUMP 127 REACTION VESSEL OUTPUT STATE=ON ALARM=YES OVERHEAT=NO
PUMP 132 SLUDGE SILO FEED STATE=ON ALARM=NO OVERHEAT=NO
PUMP 138 SLUDGE SILO OUTPUT STATE=ON ALARM=NO OVERHEAT=YES
PUMP 139 SLUDGE FINAL OUTPUT STATE=OFF ALARM=NO OVERHEAT=NO
PUMP 143 VACUUM FILTERING STATE=ON ALARM=NO OVERHEAT=NO
PUMP 154 LIQUID WASTE STATE=ON ALARM=NO OVERHEAT=NO

PUMP 166 LIQUID FILTRATION STATE=ON ALARM=NO OVERHEAT=NO
PUMP 221 ALKALI INLET STATE=ON ALARM=NO OVERHEAT=NO

PUMP 226 NA-SULPHIDE INLET STATE=ON ALARM=NO OVERHEAT=NO
PUMP 232 POLYMER PROC.A INLET STATE=ON ALARM=NO OVERHEAT=NO
PUMP 237 POLYMER PROC.B INLET STATE=OFF ALARM=NO OVERHEAT=NO
PUMP 242 POLYMER PROC.C INLET STATE=ON ALARM=NO OVERHEAT=NO

REACTION VESSEL OUTPUT /127/ (m3/h) =53
SLUDGE SILO FEED /132/ (m3/h) = 92
SLUDGE SILO OUTPUT /138/ (m3/h) =74
NA-SULPHIDE INLET FLOW /226/ (m3/h) = 68

\ Input Command >>]

Figure 4.4 Example of a poorly structured screen display

f Water Treatment Plant Chemical Precipitation Section [24] 14:18:04 \
Main Reaction Operation Function Overheat Flow Rate
PUMP 105 PROCESS WATER ON OK OK
PUMP 118 WASHWATER ON OK OK
PUMP 127 REACTION VESSEL OUTPUT ON ALARM OK 53 m3/h
PUMP 132 SLUDGE SILO FEED ON OK OK 92 m3/h
Main Reaction Operation Function Overheat Flow Rate
PUMP 138 SLUDGE SILO OUTPUT ON OK ALARM 74 m3/h
PUMP 139 SLUDGE FINAL OUTPUT OFF OK OK
PUMP 143 VACUUM FILTERING ON OK OK
PUMP 154 LIQUID WASTE ON OK OK
PUMP 166 LIQUID FILTRATION ON OK OK
Main Reaction Operation Function Overheat Flow Rate
PUMP 221 ALKALI INLET ON OK OK
PUMP 226 NA-SULPHIDE INLET ON OK OK 68 m3/h
PUMP 232 POLYMER PROC. A INLET ON OK OK
PUMP 237 POLYMER PROC. B INLET OFF OK OK
PUMP 242 POLYMER PROC. C INLET ON OK OK

\ Input Command >> /

Figure 4.5 The same information as in Figure 4.4, in a structured display

4.3 Screen Layout Design 101

m
C=-N Dan dogs (py)
n=

where:
C = layout complexity , expressed in bits
N = number of events (i.e., widths or heights)
m = number of event classes (i.e., number of unique widths or heigths)
pn = probability of occurrence of the nth event class (based on the frequency of

events within that class)

It might not be clear what is meant by number of events and number of event
classes, and how to recognize them unequivocally on the screen. The
Bonsiepe/Tullis metric applied to the screens of Figure 4.4 (N=64, m=18,
pi=1/18) and Figure 4.5 (N=79, m=5, p;=1/5) gives 266 and 183 bits respectively.
Structuring the data has reduced the number of unique widths and heights, which
contributed to a reduction of the equivalent complexity content of the second
screen.

The proposed metric is not exempt from flaws. Its major drawbacks are that it
does not cover graphic displays, the use of colour and other current techniques.
Sears (1992) proposes a different method for layout evaluation, called layout
appropriateness. This metric incorporates simple task descriptions that can assist
designers in organising widgets (small items) in the user interface. The layout
appropriateness metric requires a description of the sequences of widget-level
actions users perform and how frequently each sequence is used. The
appropriateness of a given layout is then computed by weighing the cost of each
sequence of actions by how frequently the sequence is performed.

In other words, Sears' method makes use of a detailed task analysis (or task
description) and a set of widgets to organise, so that an optimal layout in the
sense of practical use (layout appropriateness) can be defined. Existing or
proposed designs may be compared and evaluated with the optimal layout design
for a given task.

The inclusion of the task and thus the consideration of what information is most
relevant is an important aspect in the approach by Sears; in Tullis' analysis it is

100 4 Guidelines for the Practical Realisation of the User Interface

A different kind of representation for complex processes was proposed by Lind
(1990) and is known as Multilevel Flow Modeling (MFM). In this represen-
tation are primarily shown the material, energy and information flows of a plant.
In MFM every system or part of system consists of a source, a sink and transport
components for each of the flows; there are connections between the different
flow functions. Because of the physical equilibrium laws for materials and energy,
the flows must remain constant through the process or may change only in a
predetermined, known way (like e.g. when fuel is burned to produce heat). An
interruption of one of the flows is an indication of a possible disturbance in the
process; further, the disturbance is conducted to the point where the equilibrium
state is no longer verified. MFM is a very new type of representation and there is
so far no indication about its acceptance in real process control applications.

4.3.4 Representation complexity

The principles of simplicity, visibility and consistency applied to the design of
screen pages are probably the most successful method for the reduction of the
complexity of a presentation. All changes in a design that improve one of these
aspects without negatively influencing the others should be implemented.

Several methods have been proposed to measure the complexity of a
representation (this is not the same as the system complexity treated in Section
3.2), but so far there is no widely accepted metric. It is therefore not possible to
prepare alternative designs and test them a priori to select the less complex,
given a certain - fixed - amount of displayed information. The evaluation of the
preference of a screen layout (where complexity would be one of the implicit
factors that are tested) has still to be carried out in practice by conducting series
of tests with people.

Tullis (1983, 1988) compare different metrics for the complexity content of
screen displays. One such metric is a relative measure of how many characters
are used up on the screen (i.e. measure of the fill factor).

A different metric is derived from the Shannon definition of information; it was
first developed by G.A. Bonsiepe and is also described in Tullis (1983):

4.3 Screen Layout Design 99

red always means "alarm", when he perceives the colour his reaction can be
immediate. If a thinking effort is needed, like to weigh the stimulus "red" with
information about the current display screen and what red means in that specific
context, the effort will be greater and the reaction slower.

In other words, consistency means that coding is not context-dependent (i.e.
when a coding feature has different meaning on different screen pages). In
addition, coding must be natural, be processed as far as possible unconsciously
and not require explicit interpretation. Coding "cold" by red and "hot" by blue is
technically easy, but would require an effort to be understood because it is
unnatural.

There might be conflicts in the right choice of symbols. If a process is in alarm
state because its temperature is too low, should it be represented in red or in
blue? It depends on what has highest priority, whether to give an immediate
feeling about the temperature or an indication of the functional state, where the
natural colour for alarm is red. In any case, consistency should hold through all
representations. It does not matter what a code represents, as long as it always
represents the same thing.

4.3.3 Screen representation and layouting

For the definition of a graphical display page, the picture can be designed
according to different principles. In the physical or technical (spatial)
representation a plan of the plant or subunit is designed with its specific symbols
(most technical symbols are standardised). In the layout development one could
strictly follow the available technical drawings (these could be very complex and
difficult to understand) or represent the evolution of the physical process linearly,
without consideration for the actual spatial device placement. In the latter case, a
straight disposition from left to right is usually preferred.

In the task-oriented representation is shown the information that is necessary
to carry out a specific task. This representation is more oriented to operations,
while the technical representation is more apt to support conceptual thinking, e.g.
to identify the source of a problem.

98 4 Guidelines for the Practical Realisation of the User Interface

For instance, if a switch is used to connect alternatively two devices (or a
production line branches into two cells), the switch position itself can be shown,
or also which device (or cell) is connected, identifying it with a different feature
like an empty or framed symbol (Figure 4.3). The symbolic representation does
not require an explicit interpretation of the picture.

1

®) = -

= =

Figure 4.3 (a) Symbolic representation; (b) functional representation

Fisher and Tan (1989) report about an "highlighting paradox" in visual displays.
The problem they address is whether highlighting important items on a display
screen makes them easier or not to recognize. The result is that ease of
recognition depends on the highlighting mode. Blinking and reverse video lead to
delays, but not colour. The reaction times depend also on user practice.
Highlighting can be of benefit to novice users, but as subjects become more
practised, they generally know the location and the identity of the option they are
searching and highlighting becomes therefore more like a hinder. Finally, a text
should never be let blink, because this makes its reading more difficult. It is
sufficient to let a small symbol blink near it.

Consistency means that a coding clue (colour, shape, etc.) maintains its meaning
across the whole system. If red indicates an "alarm" state in a screen picture, it
should not indicate "hot" in a different picture or "inflow" in a third one.

It might be argued that with training the operators will be able to tell when red
means "alarm" and when it means "inflow". This is true, but then an important
advantage of cognitive knowledge is missed. If we consider the action model
(Section 2.1), we see that the most efficient reactions are those at skill-based
(sensomotoric) level and at rule-based level. If an operator learns by training that

4.3 Screen Layout Design 97

changing different properties in parallel and thereby conveying more information
at the same time. Common visual codes for items shown on a terminal screen are
colour, shape, dimension.

The effects of ease of perception for different types of coding have been object of
several experiments. Jubis (1990) tested perception facility for symbols that were
coded in different ways: shape, colour and shape together (redundant colour
coding), and colour alone. According to this study, coding by colour and shape
combined and by colour alone leads to faster reaction times in the human
observers than shape alone; colours result then to be the most important coding
attribute.

Colours can provide clues when they display functional states. Green is generally
perceived as indication of security, permission or correctness (it may for instance
indicate that an unit is in proper working order). Red is related to states of alarm,
danger and prohibition. Yellow is understood as a warning and can indicate the
presence of some minor problem.

Simplicity suggests that the number of colours, shapes, highlights should be kept
to a minimum. Moreover, a few different colours or shapes can be recognised
alone, but from a few values, these make sense only in comparison with others.
Colours should be used sparingly; 4-5 colours are understood with no major
effort; there are indications that 7 different colours is an absolute maximum to
never exceed. The limits on the different colours or clues that can be identified
simultaneously are related to the capacity of short-term memory (Section 2.2).

It 1s important not to rely only on colours as a means of showing important
information. A large number of people are blind to some colours and are
therefore incapable of recognising them (Section 2.2). Environmental factors like
illumination and shadows may make difficult the perception of some colours on a
terminal screen. The information to be shown should therefore present some kind
of redundancy, for instance with help of labels, texts or other graphical symbols,
in order to ensure that the conveyed meaning is understood.

A symbol may be displayed filled, empty or rastered. Alone, it is possible to tell
with certainty only 3-4 different raster patterns, others have to be observed in
relation to a reference frame.

96 4 Guidelines for the Practical Realisation of the User Interface

In general, a good layout organization has the following characteristics:

e it is adequate for the purpose; it does not present more or less
information than necessary (simplicity);

* itis, as far as possible, self-explaining (visibility);

* it is consistent at more levels. The same coding (in symbols and colours)
carries the same meaning on different screen pages and the user knows
what to expect in different situations (consistency).

The purpose of a display representation can be to induce the user to perform a
certain action, by providing informative support to a work task. In this case, the
information on whose base the user must act should be highlighted on the screen.
If instructions for the control of a machine are given, these must be clearly
represented. If several alternatives depend on the displayed data, the required
action must be represented in a direct way. The style "If the temperature is over
200 °C, then the action x should be performed" is not straightforward. On a
screen page, clarity and conciseness are imperative: "Temperature = 226°C.
Perform action x.".

The memory of the user should not be overloaded, especially in consideration
that one of the problems the computer doesn't have is to effectively store and
recall information. The user should not have to remember information from a
display page to use it then in another screen page; we have seen in Section 2.2
that there are definite and restricted limits to the amount of information that can
be retained in short-term (working) memory. The completion of any given task
should be completed in few steps and with as few commands as possible.

4.3.2 Coding

The human-computer interface must be able to draw the user's attention to
important facts and to allow prompt and correct reaction on the basis of the
given information. In this task, coding plays a crucial role. Coding is also
important for chunking (Section 2.2), to reduce a large amount of information to
a few chunks that are directly manageable in working memory.

Coding is the change of some property of a communication channel. A code
relates the type and amount of change of the channel property with the
information that has to be carried. Several codes may act concurrently, i.e.

4.3 Screen Layout Design 95

on the same screen. The screen dedicated to a work cell will present only few
basic data for each device, like whether it is operating correctly and the current
production or processing rate. At an higher abstraction level, the screen layout
for a production line will present basic data for all the cells, whose detailed states
do not have to be displayed. Although the main concept (the plant or production
line) is complex, the functional idea on each screen can remain simple: does the
machine, cell or plant operate correctly or not ?

Plant control

Production
control

Cell control

Process
control

Figure 4.2 Process representation organized according to the plant management levels
(compare with Table 3.1)

94 4 Guidelines for the Practical Realisation of the User Interface

The information showed on a display may be considered from a direct point of
view (to convey information) of from a pragmatic point of view (to lead the
operator to perform the intentions of the system designer). The purpose of
process control is (1) to direct the process according to a defined production
schedule and (2) to recognize and identify alarm states and take appropriate
measures to guarantee the safety of a process. As indicated in Section 3.5, the
information on the display must then support different types of task:

* normal operations: start-up, shut-down, normal process control,
parameter identification, process optimisation

* identification of alarm states

* indication when appropriate action has taken place in abnormal
situations, otherwise support in the search for a correction strategy.

The information content should be adapted to the user: the expert is not
interested to "simple" information that instead can be very important for a
beginner. Yet novices share often the same equipment with experts, so that
compromises must be made. In addition, the typical computer user tends to give
importance to everything that appears on a screen. Therefore screen displays
should be simple and not contain useless information, otherwise there is a risk
that unimportant items draw unwarranted attention.

The problem of the screen representation consists on the one hand of what
should be shown and on the other hand, how it should be represented. The first
question can be answered with an analysis of the structure of the technical plant
and the goal of the representation (i.e. information transfer or completion of a
work task). If the data have general information character, then possibly even a
simple tabular representation might fulfil the goal. In this case it should only be
ensured that consistent units, lead texts, state representations, etc. are used.

The simplest method for structuring the data from a complex plant follows the
hierarchical structuring of a plant as described in Section 3.3 (Figure 4.2). On
each display page should be shown only one basic concept in the simplest
possible way. Emphasis should then be given to the most important information
concerning a specific object or work task. For example, in a plant overview, the
functionality of the plant has the highest importance. All parameters related to the
same device or to different devices, but in the same task context, will be shown

4.3 Screen Layout Design 93

A clearer distinction between static and dynamic information is obtained on
screens when the lead texts are written with normal intensity and the dynamic
variables in high intensity. If the dynamic variables are also used as input, the
variable currently selected may for example be shown in reverse video (that is,
where foreground and background colours are exchanged). Dynamic variables
showing parameters in alarm state can be highlighted using a different colour or
reverse video. The contrast between normal and highlighted representation
should however not be too high, otherwise readability might be impaired.

The use of words with negative connotation ("ALARM", "WARNING") should
be avoided in lead texts unless they are clearly unrelated to the actual state of the
controlled system. The texts should motivate and not unnecessarily alarm or
irritate the user.

Quite often, it is important to abbreviate some words and expressions. Different
principles for abbreviation have been described, like e.g. in Shneiderman (1987).
The principles of simplicity, visibility, and most of all consistency should be used
in the choice of abbreviations.

Concerning the selection of fixed, pre-programmed messages, a "nice" machine
does not blame faults on the user ("wrong input!") but on itself ("The command
cannot be carried out as indicated. Input these additional data."). The second
message indicates also what kind of measure is required and provides therefore
practical support. Concerning style and pregnancy, the operational instructions
for fire extinguishers are a good reference also for computer texts.

4.3 Screen Layout Design
4.3.1 Process representation

The representation of process-related information on computer screen displays is
one of the most important aspects of the human-computer interface for
monitoring and control applications. This subject is also one of the best treated in
the literature on user interfaces.

92 4 Guidelines for the Practical Realisation of the User Interface

In most cases, the process or system development engineer is responsible for the
selection of appropriate text dialogues that are then used by other people, the
process operators. The operators will have to take decisions and perform actions
on the base of the presented information. Computer language should then not be
a poor copy of natural language, but be defined on its own to achieve the
intended communication purpose. A few indications about this use of language
will follow here.

A short sentence used to indicate only a limited number of states can be divided
in a fixed text (lead text) to indicate the type of selection together with a variable
for the actual state (dynamic variable). The lead text alone shall not give
complete information in grammatical/ syntactical sense; it should rather create a
small "tension" to be released only in conjunction with the dynamic information.
In this case it is avoided that the lead text alone is misunderstood as to be itself
the actual state information. Only the combination with dynamic information
should make complete sense. In most cases it is sufficient to use a different form
for a noun or verb, like

instead of: device A11 powered: YES/NO
use: device A11 power: ON/OFF

In general, lead texts that require an answer like YES or NO should be avoided. I
have once seen a system with messages like "NOT ALARM STATE=YES" (in
plain language, "everything's OK"). This kind of output might be correct in
Boolean sense, but is not easily understood by humans and only brings confusion.

The lead text should not be too generic and should contain hints on what the
dynamical part is going to be. Compare the following examples:

device A12 status: ON/OFF ?
OK/ALARM ?
ACTIVE/STANDBY ?
write instead:
device A12 power: ON/OFF
device A12 operation: OK/ALARM

device A12 connection: ACTIVE/STANDBY

4.2 Use of Language in the User Interface 91

overcome such a situation, two methods can be used. One is that each
consistency aspect is related to one visual clue only (size, colour, form, etc.), so
that different conditions may be indicated at the same time (e.g. via size and
colour). A second solution is to establish a hierarchy, where a type of information
overrides others.

An important support for consistency is offered by the use of standardised
interfaces. The initial anarchy of many different products has evolved to a
situation where specific user interfaces (Microsoft Windows, X-Windows) dictate
the basic operational mode of the interface. Some of the most important guideline
documents and standards for the design of user interfaces are reported in
Appendix Al.

4.2 Use of Language in the User Interface

Information exchange with computers takes place in different forms: by setting
switches and reading lamp indicators, by entering analogue values via a
continuous manipulator (mouse or joystick) and by looking at symbols and data
on a screen. The most common way to transfer information is via natural-
language messages displayed on a screen or typed via a keyboard. In this
interaction the language is used differently than for normal people-to-people
communication.

Typical computer outputs are either sampled information about analog values
("TEMPERATURE=66.2°C"), clear text messages with a few possible
alternatives ("DEVICE CONNECTED/DISCONNECTED") or prerecorded
messages ("The computer will be shut down in 5 min"). The language used for
human-computer interaction lacks most of the features that belong to natural
languages, like unclear expressions, redundancies, use of rhetorical figures etc.
The computer use of language is fully predictable ("TEMPERATURE=27.9°C"),
contrary to natural language ("it must be almost thirty degrees, I'll have a cold
beer"). A person telling the day temperature reporting decimals in colloquial
speech (and without intending to be ironic) would draw almost as much attention
as a computer asking for a beer.

90 4 Guidelines for the Practical Realisation of the User Interface

contributes to confusion. General consistency with known and trained rules and
established standards is therefore more important than the use of metaphors.

Consistency

Consistency means that the same representation is used for similar or analogue
components in a system. This means that to apply consistency in the description
or visualisation of a system, it is first necessary to create a structure for it.

Consistency can also be considered as visibility by analogy. Where visibility is
necessary to understand a concept the first time, consistency helps transfer
existing knowledge to new contexts. We have seen that there are experimental
indications that the transfer of operational (syntactic) knowledge is much easier
than the transfer of conceptual (semantic) knowledge (Section 2.7). Ideally,
consistency should hold at the operational as well as at the conceptual level,
which is not an easy task to accomplish.

Consistency can also be considered the other way around. Different clues (colour,
style, size, etc.) must reflect differences in the real world. In this case, consistency
goes along with simplicity and visibility. A picture should not show more clues
than necessary (simplicity) and each clue will indicate a real state of things
(visibility).

Consistency is probably the most difficult feature of all to achieve in a user
interface. For this, it is necessary to form classes of similarities and differences,
and then apply the same rules (language, abbreviation, colours...) to qualify the
related information. The classes requested by consistency should be kept to a
minimum.

Consistency is more difficult to achieve when different people participate in the
same development project. One programmer might like to write warning
messages all in capitals, another in lowercase. There is always a certain number of
issues that remains unaddressed in team projects, and the style of warning
messages might be one of those. But when they will be apparent for the operator,
he will be led to draw conclusions that in reality are unfounded.

A difficulty in achieving consistency is when several conflicting rules apply for a
certain representation and it is not obvious what rule holds over the others. To

4.1 General Design Principles 89

An example of simple and "visible" display for process control applications is
shown in Figure 4.1. It is not necessary to read a numeric value or check an
handbook to find out whether the displayed value is within the allowed range.

| — |

OO I BOEDEOMDO

Figure 4.1 Example of intuitive display output

The aspect of technical display instruments is the result of a development that
took several decades. Pointer instruments provide immediate information about
the relative magnitude of values and their trend; digital instruments show
information with higher precision, but are more difficult and take longer time to
be understood. In addition, many digital instruments do not give clues about the
precision of the displayed data. In some cases are displayed even five-six figures
where only three make sense. How can the user know it?

In some computer systems, visibility is obtained by using pictorial metaphors
related to everyday experience. On the computer screen is shown an icon that
represents an operation of the machine by means of known symbols. For
example a pen can indicate something to write with and a magnifying glass a
zooming feature to look at data more in detail. The symbols are not real, they
relate the operation of the known objects with similar operations for the
computer. In this way the symbols give visual clues to their function and
operation.

Metaphors have nowadays become something of a cult object, at least for part of
the computer user community. It is however important not to overestimate their
importance, especially in industrial process control applications. The
comparatively unskilled office user might find it pleasant and easy when everyday
symbols indicate system functions. For process operations, it is probably better to
indicate things for what they are and not resort to different representations. When
metaphors from different sources are mixed, this may add complexity that

88 4 Guidelines for the Practical Realisation of the User Interface

untrained personnel and programmers with no formal instruction about human-
computer interaction principles.

On the other hand, the design of screen pages alone does not solve more
complex problems in human-computer interaction. Therefore the layout designer,
rather than following recipes, should have a wider margin of freedom while
respecting a few basic principles.

Norman (1988) has identified three basic principles valid for all kinds of applied
and functional design and consequently also for user interfaces. These principles
are simplicity, visibility and consistency. They have to be understood as
framework and not as an immediate design guide for specific details.

Simplicity

Simplicity is the most important rule for all kinds of design. In process-control
applications, every display page shows a model of the physical process and its
operation. Simplicity means that no useless or irrelevant - excessive - information
is presented together with the important data. On the other hand, simplicity
should not mean impoverishment in the representation. Due to the fact that
simplicity as such does not have an objective metric, it can only be taken as a
general principle to be put in the context of other design and evaluation methods.

Visibility

Visibility is the degree of transparency of a system in describing its own
operations. Ideally, the user should have the feeling to interact directly with the
technical process and not with the computer system (Section 1.2). The operation
of the process computer must always be clear as well; the user must all the time
know whether he is acting with the technical process or with the monitoring and
control computer.

A basic principle of visibility is that some clues, mainly visual (colour, form, shape
etc.) indicate the purpose and function of a device. Visibility should provide the
link between the physical process T, its operations, and the mental model the user
has about the process, M(T) (Section 2.5).

4 Guidelines for the Practical
Realisation of the User Interface

The principles of human-computer interaction described in Chapter 2 and
Chapter 3 must lead to the practical realisation of the user interface. Hardware
and software components have to be properly selected, designed, constructed and
put together. Today, computers and workstations offer advanced capabilities for
little money. The question is then not whether to use advanced graphical
representation, but rather how to use it effectively.

In the following, we will assume a hardware user interface based on a graphical
terminal, a keyboard with control keys and a pointing device like a mouse. This
kind of hardware is readily available, is quite cheap and more than adequate to
build a good user interface. This chapter deals mainly with the presentation
aspects of the user interface, with emphasis on the coding of messages and
commands. Some of the considerations also hold for the design of control panels
with pushbuttons or other types of interfaces.

Section 4.1 introduces general design principles; these principles are then
reformulated in Sections 4.2 and 4.3 as simple and practical rules and guidelines.
Section 4.4 is a brief introduction to the command interface, Section 4.5 deals
with menus and Section 4.6 introduces briefly prototyping and evaluation
methods for the design of user interfaces.

4.1 General Design Principles

The representation of data on a screen page has drawn a lot of attention in the
literature about the design of human-computer interfaces, where practical design
suggestions are often given in the form of "cookbook-recipe" rules. This
approach might seem unscientific; many rules cannot be applied directly or just
do not make sense outside specific contexts. However, the "cookbook-recipe"
approach has at least two important advantages: It makes people conscious of
different ways to formulate problems and is immediately understandable by

