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A
Single Machine System


The simulations in Chapter 5 use the parameters below, which are partly
taken from the test system in Chapter 6.


Sbase 0.88 MVA ≡ 1 p.u.


Ubase 3.85 kV ≡ 1 p.u.


H 3.8 s


X d
' +Xt 7 Ω 0.42 p.u.


Xtl 3 Ω 0.18 p.u.


The operating point used at the field test was


Pg 0.4 MW 0.45 p.u.


Qg 0 Mvar 0 p.u.


Assuming that


V 3.85 kV 1 p.u.


gives


δ 15.3°


θ 4.6°


E' 3.92 kV 1.02 p.u.


V∞ 3.86 kV 1.0 p.u.


The switched load was


Pload 20 kW 0.023 p.u.
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B
Three Machine System


All parameters of generators, network and loads of the three machine
system can be found in [Anderson and Fouad 1993]. Only a proportional
AVR with gain 30 and a turbine governor for constant mechanical power
need to be added. The block diagrams below show their representation in
EUROSTAG.
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Fig. B.1 Main block diagram of proportional AVR.
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 MACROBLOCK INITIALIZATION SCHEME      avr1   28/03/97   23:06:46
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Fig. B.2 Block diagram for initialization of proportional AVR.
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Fig. B.3 Main block diagram of turbine governor for constant mechanical power.
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C
Twenty-three Machine System


The twenty-three machine test system in [CIGRÉ 1995] is intended for
studies of transient and voltage stability. Using the model for small
disturbance analysis motivates some modifications. These are partly related
to the system itself and partly to the model that was delivered with the
program EUROSTAG by the supplier Tractebel.


Two cases of steady state at the load flow situation LF_029 in [CIGRÉ
1995] are used  for the damping analysis. In the base case the network is
intact, while in the contingency case the double-circuit line N4044-N4045
out of service which reduces damping.


In order to make the AVRs of the generators active in both cases, the
generator buses are changed from PQ type to PV type. This improves the
voltage profile in the contingency case considerably, but activates the
reactive power limitation at five generators. The impact of these limitations
is unclear, but by choosing different voltage setpoints they can be avoided
(nominal value in parenthesis):


N1022 129 kV (130 kV)
N1043 121.5 kV (130 kV)
N4021 415 kV (400 kV)
N4031 405 kV (400 kV)
N4062 409 kV (400 kV)


The turns ratio of all transformers is set to the nominal value 1 p.u./p.u.


To create a greater challenge to the damping systems, damping is reduced
by turning off the power system stabilizers at all thermal power plants.


The current limiters that are of central importance for the voltage stability
study in [CIGRÉ 1995] are of no interest for small disturbance analysis.
They are therefore removed from the exciter models leading to the model
in Figs C.1 and C.2.


The MVA base in EUROSTAG is 100 MVA.
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Fig. C.1 Main block diagram of the exciter model
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Fig. C.2 Block diagram for initialization of the exciter model
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D
Damping Controllers


The damping controllers are introduced in EUROSTAG as PQ type
injectors that are controlled by macroblocks. The load flow is not affected
if the proportion of load is set to zero for both active and reactive power.


The macroblocks of the controllers are shown below. They include a
portion for sinusoidal modulation of the active power output, which is used
for excitation of individual modes. The excitation signal frequency and
amplitude is selected with WOSC and AOSC. Setting GAIN to zero creates
an input and an output, that appear explicitly in the linearized system. The
output is frequency deviation from the nominal value in rad/s at the local
bus (OMHAT) and at a selected machine (DOMMACH) respectively. The
input PLOAD is relative to the 100 MVA base in EUROSTAG. The unit of
GAIN is therefore p.u./(rad/s) and 1 p.u./(rad/s) = 628 MW/Hz.
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Fig. D.1 Main block diagram of damping controller using bus frequency
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 MACROBLOCK INITIALIZATION SCHEME      interpox   28/03/97   23:07:27
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Fig. D.2 Block diagram for initialization of damping controller using bus frequency
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Fig. D.3 Main block diagram of damping controller using machine frequency
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1
Introduction


… in which the problem of electro-mechanical oscillations and conventional
means for damping are briefly reviewed followed by an overview of the
thesis and its main contributions.


In their early years electric power systems did not reach far from the
generating station. Since then power systems have been inter-connected to
cover first regions and later nations. Today they extend over entire
continents and contain a huge number of components that together serve to
supply electric energy to the customers. The aim is to maintain the voltage
and the frequency at their nominal values. To improve reliability both
design and operation of power systems involve safety margins to the cost
of some profit. Much effort today is spent on control and supervision that
can reduce these margins, which also has environmental aspects. This
thesis focuses on electro-mechanical oscillations, which reduce line
transfer capacity if they are not sufficiently damped. The control of electric
loads that draw active power is suggested as means for improved damping.


The nature of electro-mechanical oscillations is outlined in Section 1.1,
followed by a brief review of the most important sources of damping in
Section 1.2. The use of electric loads is motivated in Section 1.3. The
organization of the thesis is described in Section 1.4 and its main
contributions are mentioned in Section 1.5.


1.1 Electro-Mechanical Oscillations


The problem treated in this thesis is damping of electro-mechanical
oscillations in power systems. During such oscillations, mechanical kinetic
energy is exchanged between synchronous generators as electric power
flows through the network. The oscillations can be seen in many variables,
where the rotor velocities of the generators and the power flows in the
network are the most important. The rotor velocity variation causes strain
to mechanical parts in the power plant and should be limited. The power
flow oscillations may amount to the entire rating of a power line. As they
are superimposed on the stationary line flow, they limit the transfer
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capacity by requiring increased safety margins. Given certain conditions
torsional dynamics of the turbine-generator shaft can interact with for
example the network, leading to subsynchronous oscillations. Such
oscillations are not considered in this work.


Fig. 1.1 The Nordic high voltage network – the Nordel system – in 1996.


The term synchronous generator stems from the fact that this electrical
machine is synchronized to the network. This makes the shaft speed
connected to the frequency of the voltage in the network. At any point in
the network the mains frequency is thus determined by the rotor velocity of
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nearby generators. A consequence worth to mention is that electro-
mechanical oscillations can be detected in the mains frequency as a
variation around the nominal 50 or 60 Hz.


Studying the damping of electro-mechanical oscillations is generally
referred to as small disturbance stability analysis, which makes linear
mathematical models valid. By formulating such a model of the power
system the electro-mechanical dynamics can conveniently be decoupled
into a number of modes. A mode can be thought of as a resonance and is
identified by its combination of oscillation frequency, damping and mode
shape.


The mode shape indicates which generators that are active and how they
swing against each other. There are local modes where one generator
swings against the rest of the system typically with a frequency of 1-2 Hz.
For inter-area modes the generators in a large area swing together against
one or more other areas at a frequency of 0.1-1 Hz. Examples of such areas
in the Nordic power system shown in Fig. 1.1 are: the Danish island
Zealand (Sjælland); Finland; southern Norway; southern Sweden and
northern Sweden.


In the linear model the mode oscillation is described as a sinusoid with an
exponential decay. The time constant of this exponential is a simple but
convenient measure of damping. Inter-area modes in general exhibit low
damping, meaning a time constant of more than ten seconds. If damping is
negative even a small perturbation may excite a growing oscillation.


While damping of local modes can be referred to a single machine and its
controls, inter-area mode damping is more related to system properties
such as network configuration and power flows. Interconnecting two power
systems improves reliability of the power supply, but also introduces a new
inter-area mode. If the rating of the tie-line is not sufficient as compared to
the power flows associated with the mode, the damping of the mode will be
low. The influence of line loading on damping is of current interest as
environmental issues make it more difficult to reinforce existing power
lines to meet the increasing demand of electric power.


New trading agreements, due to the deregulation of the electricity market
and new system inter-connections, give new loading situations. If these
have not been analyzed, they can cause problems. This was the case at the
disturbance in Sweden on January 1st 1997. In contrast to the normal
situation, Denmark this day exported electric energy to Norway via
Sweden: A bus-bar fault near Gothenburg (Göteborg) unexpectedly caused
tripping of several lines important transmission lines, so that two units of
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the nuclear power station Ringhals (see Fig. 1.1) to be radially connected to
the main grid. As the connecting lines are weak this led to an oscillation
with increasing amplitude. After ten seconds the two units were tripped and
the system settled down. Fig. 1.2 shows recordings of the power flow of a
central line along with voltage and frequency at a point near Helsingborg.
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Fig. 1.2 Recordings from the event in southern Sweden on January 1st, 1997: The
power flow (top) is reversed when the lines are disconnected. This excites
an undamped oscillation that is seen in the voltage (middle) and the
frequency (bottom). Several switching actions are performed before the
Ringhals units are tripped at 23:19:08. The maximum deviation in mains
frequency, here 0.6 Hz, is considered large.


The morning papers treated the press releases about the event as financial
news. Terms such as electro-mechanical oscillations or damping were not
mentioned.


1.2 Sources of Supplementary Damping


As the damping of electro-mechanical power system dynamics inherently
is low, sources of supplementary damping are sought for. The individual
generator is equipped with a PSS (power system stabilizer) and damper
windings. Systems based on high power electronic equipment is known as
FACTS (Flexible AC Transmission System [Hingorani 1988]). Such
devices have received much attention during the last five years. They are
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mostly located on tie-lines and influence the electro-mechanical
oscillations through the power flow P on the line,


P = V1V2


X
sin θ1 − θ2( ) (1.1)


where X is the line reactance and V1, V2, θ1 and θ2 are the magnitudes and
phase angles of the voltages at each end of the line. Different types of
FACTS devices affect P by manipulating different variables or parameters.
All FACTS devices have a high bandwidth which is advantageous. Their
main drawback is the need for sophisticated protection that often requires
more ground space and is more complex than the compensator itself
[Jönsson 1996]. HVDC (High Voltage Direct Current) links can also be
used for damping purposes. As several FACTS and HVDC controllers may
be involved to damp a mode it is very important to assure that they do not
counteract each other.


In the following the characteristics of the most common sources of
supplementary damping are briefly reviewed. Their operating principles are
described as well as their advantages and drawbacks.


Power System Stabilizer


All new synchronous generators are equipped with a PSS, which is the
most widely spread damping controller. It is a low-cost add-on device to
the Automatic Voltage Regulator (AVR) of the generator and operates by
adding a signal to the voltage reference signal. High AVR gain gives good
voltage control and increases the possibilities of keeping the generator
synchronized at large disturbances, but contributes negatively to damping
[de Mello and Concordia 1969]. This conflict is mostly solved by limiting
the PSS output to ±5 % of the AVR setpoint. The trade-off can be solved
more elaborately by integrating the AVR and the PSS and use a design that
simultaneously takes voltage control and damping into account [Akke
1989], [Heniche et al 1995].


The PSS classically uses shaft speed, active power output or bus frequency
as input [Larsen and Swann 1981]. The stabilizer itself mainly consists of
two lead-lag filters. These are used to compensate for the phase lag
introduced by the AVR and the field circuit of the generator. Other filter
sections are usually added to reduce the impact on torsional dynamics of
the generator, and to prevent voltage errors due to a frequency offset. The
lead-lag filters are tuned so that speed oscillations give a damping torque
on the rotor. By varying the terminal voltage the PSS affects the power
flow from the generator, which efficiently damps local modes.
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Fig. 1.3 Block diagram of conventional power system stabilizer. Ks is the stabilizer
gain, while Tw and T1-T4 are the parameters of washout and lead-lag
filteres respectively. The PSS output is added to the difference between
reference (Vref) and actual value (Vact) of the terminal voltage.


A difficulty of PSS tuning, except for the trade-off with voltage regulation,
is that the dynamics that should be compensated by the lead-lag filters vary
with the operating point and the network reactances [Larsen and Swann
1981].


The effect of PSS on inter-area modes differs from that on local modes in
two ways. Firstly the achievable damping of inter-area modes is less than
that of local modes. Secondly inter-area modes are affected mainly through
modulation of voltage sensitive loads. This makes assumptions on load
characterstics critical both for investigations and for field tuning [Eliasson
and Hill 1992], [Klein et al 1992]. Damping of both local and inter-area
modes requires suitable phase compensation over a wider frequency range,
which may be difficult to achieve.


Static Var Compensator


The Static Var Compensator (SVC) is a reactive shunt device, that uses its
reactive capability to alter the bus voltage, which enables a regulated
voltage support. An SVC for continuous control contains a thyristor
switched capacitor bank in parallel with a bank of phase angle controlled
reactors and is connected to the transmission voltage level via a
transformer.


Fig. 1.4 One-line diagram of static var compensator.
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The SVC influences electro-mechanical oscillations like the PSS: it both
changes the line transfer (by controlling V in (1.1)) and modulates voltage
sensitive loads [Ölvegård et al 1981]. Depending on which of these effects
that dominate, the SVC is placed either at the midpoint of a long
transmission line or near a load centre.


To avoid telemetering of measurements, the damping controller of an SVC
should use local signals such as time derivative of bus voltage [Gronquist
et al 1995], [Smed and Andersson 1993], active power flow or line current
magnitude [CIGRÉ 1996].


For a fixed controller with active power flow as input, the resulting
damping is proportional to the line transfer, which means that a reversal of
the power flow direction gives negative damping. This has been a practical
problem at the SVC installed at Hasle in Norway, between the capital Oslo
and the Swedish border. The damping controller is designed to damp
oscillations between southern Norway and Denmark (Zealand), when
power is exported from Norway. After some incidents when the SVC
caused sustained oscillations, the damping controller is now disengaged
whenever power flows into Norway at this connection [CIGRÉ 1996].


The GTO (Gate Turn-Off thyristor) based ASVC (Advanced SVC) can
replace an SVC. The main difference is that the maximum reactive power
output of the SVC is proportional to the square of the bus voltage, while
that of the ASVC is constant down to very low voltages [Larsen et al
1992]. This property motivates the term STATCON (Static Condenser).


Controllable Series Capacitor


The Controllable Series Capacitor (CSC) is connected in series with long
transmission lines as in Fig. 1.5. In the first place its presence is motivated
by the need to effectively shorten the line electrically, which increases the
power transfer capability.


Fig. 1.5 One-line diagram of controllable series capacitor. The filled thyristors are
conducting, which makes it possible to both increase and decrease the
capacitance.
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A CSC affects electro-mechanical oscillations by modulating the transfer
reactance of a line, such as X in (1.1). The impact of this control action
increases with line loading [Noroozian and Andersson 1994], which is a
desirable property. The CSC is more effective  than the SVC for damping
purposes [Ängquist et al 1993], [Noroozian and Andersson 1994], which is
explained by how they are connected: the series device affects the entire
line flow; the shunt device only changes a part [Gronquist et al 1995].


While fixed series capacitors are common, only a few CSCs are currently
in operation. An important reason is the constructional difficulties with a
main circuit on line potential. The voltage rating of a CSC is typically a
fraction of the normal voltage drop over the line where it is installed. As
this is far less than the voltage resulting from a three-phase short-circuit on
the line, protection circuits that by-pass the compensator are critically
important.


Due to the low number of CSCs in operation no statements about the
measurements commonly used by damping controllers can be made. Just
like in the SVC case it is advantageous if the signals are locally available.
[Gronquist et al 1995] suggests the use of line voltage drop and its time
derivative. In [Larsen et al 1995], the mean frequency in remote areas are
synthesized from local measurements of voltage and current, while [Chen
et al 1995] settles for active and reactive line flow.


High Voltage Direct Current Link


In a High Voltage Direct Current (HVDC) link the AC voltage is rectified;
transmitted as DC; and converted back to AC. The absence of reactive
transmission losses makes HVDC the preferred technique for connections
with submarine cables longer than 30 km and for overhead lines longer
than 600 km [Kundur 1994]. The DC transmission also provides an
asynchronous connection between two power systems, which is of
particular value when the systems have different frequencies such as 50
and 60 Hz. Fig. 1.1 shows a number of submarine DC cables that connect
the Nordel and the UCPTE systems of Scandinavia and western Europe
respectively. The connection between the Swedish mainland and the island
Gotland was the World's first HVDC link. It has a length of 90 km and was
installed in 1954.


An HVDC link is controlled at the rectifier and the inverter through their
firing angles and through the tap changer of the transformer at each
converter station. The control system operates in a number of control
modes, where certain variables are held constant. The control has several
objectives, which makes the resulting control system fairly involved. The
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ability to directly affect power flow makes HVDC links very powerful for
damping of electro-mechanical oscillations. The Fenno-Skan link connects
eastern Sweden and southwestern Finland and has a damping controller
whose output is limited to 50 MW. It has a great impact on the mode where
machines in southwestern Norway swing against machines in southern
Finland [Smed 1993].


The active power modulation is typically controlled by the frequency at the
converter station(s) [Smed 1993], [Jones 1996], the frequency of a nearby
generator [Eliasson and Hill 1992], [Jones 1996] or a line flow [Kundur
1994], [Jones 1996].


Since the converters are line commutated, a reactive power consumption is
associated with the active power flows. The dependence between the
modulations of active and reactive power is governed by the control mode.
It may either support the active power modulation or counteract it [Smed
1993].


Evolving Technologies


The technologies described above are in operation today, but new power
electronic devices with a potential for damping of electro-mechanical
oscillations are constantly suggested [Hingorani 1993]. The Universal
Power Flow Controller (UPFC) currently receives considerable attention
[Bian et al 1996]. The Phase Angle Regulator (PAR) [Iravani et al 1994]
and the Superconducting Magnetic Energy Storage (SMES) [Hauer and
Boenig 1987] have been considered for some time, but neither seem to be
in commercial use yet.


1.3 Controlling Active Loads for Damping


By lending a small fraction of the rating to a damping controller, actuators
that primarily are installed for other purposes contribute to damping. The
effectiveness is mainly determined by the ability to modulate the flows of
active power in the network. With this in mind the loads of the power
system are potentially interesting: their joint rating is large and turning
them on and off certainly has impact on the power flows.


From a power system control point of view, however, loads are not
controllable and are thus regarded as disturbances rather than as actuators.
This situation is currently changing as systems for two-way customer-
utility communication are installed as part of DSM (Demand Side
Management) programs. Via the control outputs of intelligent electricity
meters that communicate with the utility, the utility can remotely control
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selected loads within customer premises in a nondisturbing manner. The
resulting direct load control systems are mainly used for load management
actions such as peak shaving (reduction of power peaks).


Control of active power has a powerful influence on electro-mechanical
oscillations, which is demonstrated by the Fenno-Skan HVDC link
mentioned above (see also cover page). This would motivate the use of
controlled active loads to improve damping, but all active loads can not be
used for this. Loads with an internal energy storage may, however, be
interrupted with little inconvenience for the customer. Thermal loads such
as domestic water heaters, stoves and district heating boilers are therefore
well suited for fast load control. If future electric vehicles are charged from
the electric mains, they are also adequate.


Loads have previously been used for damping by placing an SVC at a load
area and modulating the voltage [CIGRÉ 1996]. A similar voltage induced
change in load is obtained through tap changer control. As long as the tap
changers are mechanical the resulting variation, however, is too slow for
damping of electro-mechanical oscillations.


Low voltage loads draw their power from the transmission network
through the lines, cables and transformers of the distribution network.
These components give rise to reactive losses that vary with the loading
level. Turning a purely active low voltage load on and off will therefore
modulate both active and reactive power at the point in the transmission
network where the radial distribution network is connected.


In this thesis the reactive component is not considered. Oscillations in the
transmission network are assumed to be damped by controlled active
transmission loads, while oscillating machines in the distribution are
damped by low voltage loads. An interesting transmission load is the
district heating boiler previously mentioned. In southern Sweden a number
of such boilers exist today. The two largest ones are connected to the
subtransmission network and their ratings are 100 MW and 70 MW, which
can be compared to the 50 MW limit of the damping controller on the
Fenno-Skan HVDC link. In order to be used for damping, a part of their
rated power needs to be modulated with a bandwidth of a few Hz. This is
realistic with currently available techniques, but has not been implemented.


1.4 Outline of the Thesis


In Chapter 2, modal analysis of linearized differential-algebraic models is
outlined. It also presents the three power system models that are studied in
the thesis and the mechanical equivalents that are used for qualitative
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understanding and interpretations. Chapter 3 shows where active power
modulation is most effective in each test system. In Chapter 4, three
measurement signals are introduced and their efficacy in the two multi-
machine test systems is quantified. Chapters 5 and 6 demonstrate damping
of electro-mechanical oscillations by on-off control. Methods for analysis
of the nonlinear controller are provided in Chapter 5, while the field test of
a practical implementation is described in Chapter 6. Chapter 7 explores
the impact of one linear damping controller on a mechanical equivalent and
on the two multi-machine test system. The use of two linear damping
controllers is treated in Chapter 8. In Chapter 9 the efficiency of two
damping controllers is demonstrated through time simulations of the large
test system. Conclusions and suggestions for future work are given in
Chapter 10.


1.5 Objectives and Contributions of the Thesis


The thesis treats the use of controlled active power at one or more locations
in a power system to increase damping of electro-mechanical modes. The
focus is on structural aspects of interaction and of sensor and actuator
placement. The main objective is to explore the fundamental possibilities
and limitations of the resulting damping system, and to relate them to the
structure of the power system. A second objective is to give insight into the
complex power system dynamics by providing simplifications and
interpretations.


The contributions can be referred to modelling, to control of active power
using different measurement signals and to practical experience gained at
the field test.


Modelling


Numeric linearized differential-algebraic models of three power systems
with one, three and twenty-three generators are used for the analysis. The
two latter are generated by the power system simulator EUROSTAG and
exemplifies the practical use of large models. A number of analytic models
with the same differential-algebraic structure are also given. One of them is
a simple linearized multi-machine model, that makes it possible to
analytically investigate the impact of controlled active power on electro-
mechanical dynamics.


Analytical mechanical equivalents to local and inter-area modes in power
systems are included to proved intuitive and qualitative understanding. The
spring-mass inter-area mode equivalent and the multi-machine power
systems are treated in parallel. It is shown that the individual electro-
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mechanical modes of the multi-machine power systems behave like the
mechanical inter-area mode equivalent. A pendulum equivalent to a local
mode is shown to provide easily understandable information regarding
suitable locations of actuator and sensor. The mechanical nature of electro-
mechanical power systems modes is further exploited by visualizing the
mode shape of network related variables like the bending-modes of flexible
mechanical structures.


Control


Local bus frequency and machine frequency are used as measurement
signals, which leads to a modest need for telemetering. The efficiency of
using active power for control (mode controllability) and of using local
phase angle or frequency as measurement (mode observability) are shown
to have the same geographical variation in the mechanical power system
equivalents. The same thing is proved to hold for a general system
represented by the analytical multi-machine model. An extension of the
proof shows that all modes will initially be better damped when the gain,
relating the active power to the local bus frequency, is increased from zero.


Numerical investigations show that the damping is improved at small gains
but also that it is limited. This applies both when using local bus frequency
and machine frequency to control the active power. For large gains the
eigenvalues of the electro-mechanical modes move towards resonant
transfer zeroes with low damping. The zeroes occur in all the studied
systems and their locations relative to the open loop eigenvalues can be
predicted by the spring-mass inter-area mode equivalent.


It is pointed out that the swing energy and its dissipation correspond to
reactive and active power defined at the swing frequency. This leads to the
conclusion that tuning a viscous damper in a spring-mass system for
maximum damping is equivalent to impedance matching. A numerical
comparison shows that the gain obtained through impedance matching
deviates slightly from the point of maximum absolute damping. The
introduction of a second damper may not increase the maximum obtainable
damping. This is explained as a case of impedance matching where the
second damper disturbs the first damper rather than supports it.


Field Test


A field test at a small hydro power station demonstrates damping by on-off
control of a load. It gives practical experience of the required signal
processing. The results are also valuable for communicating the idea of
load control for damping purposes.
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10
Conclusions


… in which the results of the thesis are reviewed and some continuations of
the work are suggested.


All results indicate that active power is efficient for damping of electro-
mechanical oscillations. The work presented here provides thorough
understanding of the fundamental limitations associated with active power
controlled by a frequency signal. This is outlined in Section 10.1 together
with the experience gained from the different models and methods that are
used. One possible implementation of the studied damping systems relies
on the use of controlled active loads in the low voltage network. It would
give the desired modulation of active power in the transmission system, but
also a variation in reactive power. A closer investigation of the extent and
the effects of this reactive variation, is one of the most important topics for
future research suggested in Section 10.2.


10.1 Summary of Results


The exploration of active power controlled by different signals has
provided knowledge about the controllers themselves, but also insights in
the dynamics of the power systems. This is summarized below together
with observations more related to the used models and methods.


Linear Control of Active Power


The suggested linear damping controllers influence the system in a way
that can be well understood. This is mostly done by studying the
mechanical inter-area mode equivalent. Provided the gains are small the
dampers have a positive effect on damping of the modes that are affected
while others are left practically unaltered. This applies for all the tested
locations and was predicted for the local bus frequency case by the proof in
Chapter 4.


The impedance matching concept explains the limitation in maximum
obtainable damping as well as the possible reduction in damping when a
second damper is introduced.
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In the twenty-three machine system, the use of two dampers gives good
damping of the three selected modes for the case when the line N4044-
N4045 is out of service. The fact that eigenvalue locations are not altered
much by reinserting the line, indicates a certain amount of robustness
against structural changes in the network.


On-off Control of Active Power


The field test verifies the results in Chapter 5, that on-off control of active
power can be used for damping of electro-mechanical oscillations. It also
shows that estimated mode frequency as described in Chapter 4 is
practically useful and needs only one-phase measurements of three
variables. Furthermore the test illustrates how little active power that needs
to be controlled.


Models


The mechanical equivalents used along with the power system models
provide analytical expressions for eigenvalues and zeroes as well as
measures of mode controllability and mode observability. The spring-mass
systems are linear which makes it straightforward to write down the
equations, whereas the pendulum equivalent needs linearization. The
pendulum, on the other hand, is easier to visualize as it moves in one
direction and extends in another.


The use of numerical multi-machine models demonstrates that the results
obtained for the inter-area mode equivalent are valid also in a large power
system model. When properties specific to meshed networks are of central
importance, the one-dimensional inter-area mode equivalent is not valid
and is replaced by the three machine system.


By introducing an electric equivalent to the inter-area mode, it is shown
that the swing energy and its dissipation correspond to reactive and active
power. This naturally leads to the interpretation that tuning a damper for
maximum damping is equivalent to impedance matching.


Methods


The analysis makes extensive use of the eigenvectors of DAE models. It is
evident that the algebraic part of these eigenvectors contain useful
information related to the network. This is exemplified in Chapters 3 and 4
by the measures of active power mode controllability and phase angle
mode observability at all buses. For the studied power systems these can be
illustrated as bending modes of flexible structures.
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Root locus plots are used to study damping for large gains. By comparing
eigenvalue sensitivities against root locus plots it is clear that the
directional information of the sensitivities is accurate. The sensitivity
magnitude, on the other hand, says little about how far the eigenvalue will
move. By comparing root locus plots it is shown that modes may change
identities when their eigenvalues are close to each other.


The linearized multi-machine power system models are generated by the
power system simulator EUROSTAG. This guarantees the consistency
between the models used for linear analysis and time simulations, which is
demonstrated.


10.2 Future Research


The use of controlled active distribution loads for damping is realistic, but
implicitly also includes modulation of reactive power. The main challenge
in the continued work is to manage this reactive component. Alternatively,
if active power can be controlled at the transmission level, the suggested
control laws can be used but need further refinement. In any case the
robustness of the resulting control system should be thoroughly
investigated.


Impact of Reactive Power


Whereas the possibilities to control active power at the transmission level
are limited, they are better at the distribution level. The field test indicates
that generators connected to the distribution network can be damped by
controlling nearby loads. Their impact on oscillations in the transmission
system is less obvious due to the reactive losses in distribution system
lines, cable and transformers. Switching an active distribution load will
cause a variation in both active and reactive power delivered by the
transmission system. The study of this phenomenon can be divided into
two parts: one dealing with characterization of the reactive component and
one that considers its effect on the system. The latter is done by extending
the mode controllability analysis in Chapter 3 to reactive power.
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Bus Mode 1 Mode 2 Mode 3


P N47 0.096ej105° 0.021ej32° 0.145e-j42°


Q N47 0.005e-j152° 0.028e-j94° 0.101ej145°


P N51 0.318ej101° 0.224e-j64° 0.044e-j43°


Q N51 0.224e-j69° 0.083ej128° 0.026ej150°


P N63 0.381ej106° 0.228ej119° 0.142ej135°


Q N63 0.201e-j65° 0.177e-j57° 0.090e-j40°


Table 10.1 Mode controllability of active (P) and reactive (Q) power respectively.


The mode controllabilities of active and reactive power at some buses in
the twenty-three machine system are given in Table 10.1. These
preliminary results show that the reactive power mode controllability has a
lower magnitude and opposite phase as compared to the active power mode
controllability. The influence of the controlled active power on the modes
is thus reduced by the reactive component. This indicates that the proposed
control laws will be less effective. It can, however, be beneficial for other
purposes: at buses where the total controllability of all modes is very small
the switching of large amounts of load will not affect the electro-
mechanical dynamics. This can be used in special trading situations where
the possibility of temporarily making power available is valuable.


To analyse the impact of reactive power the model needs to represent
voltage dynamics. This disqualifies all the analytical models presented in
Chapter 2. The proper treatment of reactive power requires more
complicated models, where the numerical models used throughout this
work are good candidates. The work done on the use of SVCs for damping
also points out the importance of realistic load models. An important topic
is consequently appropriate modelling of controlled low voltage loads.


Control of Active Power


A continued analysis of using controlled active power at the transmission
level, should consider possible implementations. The use of a district
heating boiler has already been mentioned. One alternative is to use
controlled distribution loads in combination with an SVC at the
transmission level. In this case the active power drawn by the loads is used
for damping, while the associated modulation of reactive power is
compensated for by the SVC. Industrial use of DC or charging stations for
electric vehicles may introduce power electronic converters. If they are self
commutated they can contribute to reactive compensation at a lower
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voltage level when their active power consumption is modulated for
damping.


The robustness of the proposed control laws deserves a comprehensive
treatment. This is even more important when reactive power modulation is
involved as its properties vary much with different loading situations.


The linear controllers will benefit from further work on filtering. A simple
improvement is to include washout filters, so that they do not respond to
offsets in system frequency. The frequency is the same at any point in a
radial distribution network as at the point in the transmission network
where it is connected. If appropriate filtering can be provided the local bus
frequency may thus be determined anywhere in the distribution network.


On-off control can use local bus frequency if the signal could be processed
so that it is not disturbed by the switching actions. The procedure for
selecting the relay threshold described in Chapter 5 can perhaps be adapted
to multi-mode systems. The use of dynamic braking resistors must consider
the impact on the fatigue life of turbine-generator shafts [Kundur 1994
p. 1106]. The corresponding effect of transmission loads that are switched
to damp oscillations must be investigated. The problem may be eliminated
by the fact that the rating of these loads is considerably less than that of a
braking resistor.


When a realistic implementation has been designed, it would be interesting
to see what influence it has on the scenario of January 1st 1997 described
in Fig. 1.2.
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2
Modelling


… in which linear models and modal analysis are outlined, followed by the
presentation of three test systems and mechanical equivalents, that are used
throughout the thesis.


Whereas setting up a linearized power system model earlier has been a
tedious and demanding task, new digital simulators feature automatic
functions for this and can export a complete matrix model of the entire
system. This considerably improves the reliability of the linear model and
at the same time allows the analyst to concentrate on the analysis itself. An
important prerequisite is that the structure and the properties of the
exported model are well known. This is the aim of section 2.1, which
describes the linearized differential-algebraic matrix equation and its
properties using the more common description based on ordinary
differential equations as a comparison. The power of linear models is to a
great extent due to the existence of modal analysis, which is outlined in
section 2.2. A few techniques for model reduction are also mentioned there,
as they rely on modal analysis and are very common. Three test power
systems are shortly described in section 2.3. They represent three different
levels of complexity and are used throughout the thesis to offer a
quantitative dimension to the analytical treatment. Mechanical analogs to a
local mode and an inter-area mode are presented in section 2.4. They will
be used extensively in the following chapters.


2.1 The Modelling Procedure


Setting up a linearized power system model for control design purposes
typically involves going through three to five of the following consecutive
steps:


• selecting component models;
• merging component models into a usually nonlinear system model;
• forming a matrix equation through linearization;
• eliminating algebraic variables;
• forming transfer functions.
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While this procedure is straightforward in principle, it could pose practical
difficulties due to the amount of variables and parameters to administrate.
This problem is, however, solved by modern software that is commercially
available. Software for time simulation of power systems generally offers
only a limited number of component representations, which facilitates the
first step. Before running simulations, the nonlinear system of equations
describing the entire power system is created. Some simulators, such as
EUROSTAG from Tractebel-Electricité de France [EUROSTAG], also
feature functions for linearization and export of a linearized model of the
entire power system. Fig. 2.1 shows the procedure for creating a linearized
model.


Enter network Enter dynamics Enter events


Initialize
Start simulation


Stop simulation


EUROSTAG_E


EUROSTAG_LF


EUROSTAG_S


Linearize


File network.ech


File network.sav


File dynamics.dta File case.seq


File case.key File case.lin


Matlab


Compute load flow


Fig. 2.1 A linearized model can be obtained from the time simulation program
EUROSTAG: Network, dynamics and event files are created with the editor
EUROSTAG_E. Having computed the initial load flow solution with
EUROSTAG_LF, the simulator EUROSTAG_S is run. During steady state,
the system is linearized and as simulation terminates two files containing the
system model are written. These can then be read into e.g. Matlab.


The nonlinear time simulation model and the linearized model for control
design thus contain the same initial models, use the same parameter set and
operating point and are consequently guaranteed to be consistent. By
finally loading the linearized system into for example Matlab [Matlab],
transfer functions can conveniently be formed. In practice, the user thus
only needs to select component models, connect them and enter their
parameter values. To prove general properties through analytical reasoning,
however, some modelling steps are outlined in more detail below.


Forming the Linear Differential-Algebraic Equation


The full system is in general described by a set of nonlinear vector valued
differential-algebraic equations (DAE),
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ẋd = f xd ,xa,u( )
0 = ea = g xd ,xa,u( )


y = h xd ,xa,u( )
(2.1)


where xd and xa are the vectors of dynamic and algebraic variables
respectively while u and y are the input and output vectors. The variables
that are set to zero by the algebraic equation are denoted ea. Alternatively u
and y can be incorporated as algebraic variables together with xa, forming
a vector x̃ a . This gives a more compact description,


ẋd = F xd , x̃a( )
0 = ea = G xd , x̃a( )


Small disturbance stability analysis treats only small deviations from a
stationary operating point. A model linearized around this point is valid in
its neighbourhood. Coordinates for small deviations from the linearization
point (denoted by superscript 0) are then introduced,


∆xd = xd − xd
0


∆xa = xa − xa
0


∆u = u − u0


∆y = y − y0


A linear DAE is then obtained by partial differentiation of the nonlinear
functions f, g and h,


Edae
d


dt
∆xd
∆xa










= A dae
∆xd
∆xa










+ Bdae∆u


∆y = Cdae
∆xd
∆xa










+ Ddae∆u


(2.2)


using


Edae = I 0
0 0










and the Jacobian matrices,
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A dae = A11 A12
A 21 A 22










=


∂f


∂xd


∂f


∂xa
∂g


∂xd


∂g


∂xa


























     Bdae = B1
B2










=


∂f


∂u
∂g


∂u
























Cdae = C1 C2[ ] = ∂h


∂xd


∂h


∂xa













         Ddae = D1 = ∂h


∂u


An equivalent and very convenient expression is obtained by merging the
dynamic states ∆xd and ∆ x̃ a  into a single vector ∆x,


E∆ẋ = A∆x (2.3)


where


∆x = ∆xd
∆x̃a










=


∆xd
∆xa
∆u
∆y
























∆x contains both dynamic states, algebraic variables, inputs and outputs. As
shown in Fig. 2.1, EUROSTAG exports the linearized system as two files.
One (case.lin) contains the matrices A and E, while the other (case.key) is a
description of the contents of ∆x. By inspecting E and A, inputs can be
identified as independent algebraic variables. Similarly explicit outputs
appear as variables upon which no other variables depend. Using this
technique, the different parts of ∆x are distinguished, Edae is formed and A
is partitioned into Adae, Bdae, Cdae and Ddae.


While the general model of (2.1) could include time as an explicit variable,
the linearized models of (2.2) and (2.3) are considered time invariant. Time
varying properties such as changing operating points require repeated
linearization. The fact that a valid linearized model is available gives
access to the extensive set of techniques based on eigenanalysis. The most
important features of this will be treated in Section 2.2.


In the following, ∆ is omitted as all linear equations use variables that
denote deviations from the linearization point.


Eliminating Algebraic Variables


In the following it is assumed that A22 is invertible. The algebraic variables
can then be uniquely determined from the algebraic part of (2.2) as,
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xa = −A 22
−1 A 21xd + B2u( ) (2.4)


The elimination of xa , yields a matrix ordinary differential equation
(ODE),


ẋd = A odexd + Bodeu


y = Codexd + Dodeu
(2.5)


where


A ode = A11 − A12A 22
−1A 21


Bode = B1 − A12A 22
−1B2


Code = C1 − C2A 22
−1A 21


Dode = D1 − C2A 22
−1B2


Algebraic variables are mostly introduced as they naturally appear in a
certain model structure with certain parameters, which is retained in the
DAE model. The part of this structure that is contained in the matrix A22, is
in general lost in the conversion to ODE model as A22 is inverted. Due to
this loss of information, the conversion is not reversible.


Note that a nonzero Dode gives rise to a direct dependence between an
input and an output. Installing a controller with a direct term, such as a
proportional controller, between these yields an algebraic loop that may
complicate simulations. This situation arises if D1 is nonzero, or if both the
input and the output are algebraic variables causing B2 and C2 to be
nonzero.


While both the ODE and DAE descriptions can be considered as state
space representations, control design methods known as state space
methods predominantly handle only ODE models.


Forming Transfer Functions


An alternative to the state space approach is frequency domain methods
based on transfer functions. Starting out from an ODE model, the
corresponding set of transfer functions is defined as,


Y s( )
U s( )


= Code sI − A ode( )−1Bode + Dode (2.6)
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where s is the Laplace operator or complex frequency. Transfer functions
are well suited for determining transfer function zeroes. An input signal
having the frequency of a transfer function zero is blocked and will not
affect the output. While being unique for SISO systems, the definition of
transfer zeroes for multi-input-multi-output (MIMO) systems is less clear
[Maciejowski 1989]. As a transfer function maps inputs to outputs, it is
very convenient when a model is to be based on measurements rather than
a known physical structure. This requires entirely different methods than
those presented above. Transfer functions carry magnitude and phase
information of a signal path as a function of frequency which is used when
selecting the proper phase shift of a controller. Compared to an ODE
model, a transfer function model contains even less information as all
structural system information has been removed.


2.2 Modal analysis


In a linear system, the dynamics can be described as a collection of modes.
A mode is characterized by its frequency and damping and the activity
pattern of the system states. If the damping is low, which is the case for
electro-mechanical modes or swing modes in power systems, they can be
thought of as resonances. The mode concept is based on a change of
coordinates by diagonalization. As in many engineering areas an adequate
choice of coordinates can decouple complex relations. This is particularly
true with modal coordinates, which offer a convenient simplification of the
system while being valid for the full system.


The Matrix Ordinary Differential Equation


The ODE system matrix Aode can normally be diagonalized by the square
right modal matrix Φ,


Φ−1A odeΦ = Λ
A odeΦ = ΦΛ


(2.7)


The columns of Φ are the right eigenvectors Φi to Aode, while the diagonal
elements of the diagonal matrix Λ are the eigenvalues λi of Aode.


Similarly the left modal matrix Ψ holds the left eigenvectors Ψ i as rows
and also diagonalizes Aode,


ΨA odeΨ−1 = Λ
ΨA ode = ΛΨ


(2.8)
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The definitions (2.7) and (2.8) allow scaling of the eigenvectors with any
complex number. In order for the left and right eigenvectors to be
consistent it is required that ΨiΦj=1 for i=j (and ΨiΦj=0 for i≠j). This is
conveniently guaranteed by computing Ψ as the inverse of Φ. If there are
eigenvalues at the origin, Φ can however not be inverted. Ψ i and Φi
corresponding to such an eigenvalue are orthogonal and their product is
zero. In practice eigenvalues are unlikely to exactly equal zero. Instead
they take a very small value, leading to an ill-conditioned matrix. The
inverse of Φ can then be computed, but its validity depends on the
numerical accuracy that is used. It is therefore necessary to verify that the
product of associated left and right eigenvectors of interest is one.


Provided that Ψ and Φ are available, the ODE system can be transformed
into modal coordinates z through a transformation,


xd = Φz


Φż = A odeΦz + Bodeu
y = CodeΦz + Dodeu





ż = Φ−1A odeΦz + Φ−1Bodeu
y = CodeΦz + Dodeu







ż = Λz + ΨBodeu
y = CodeΦz + Dodeu





Note that the dynamics now are governed by uncoupled first order
differential equations — the modes. As seen in the block diagram of Fig.
2.2, the input u j affects the mode i through element (i,j) of the mode
controllability matrix [Porter and Crossley 1972] ΨBode. Analogously
mode j appears in the output yi to an extent that is determined by element
(i,j) of the mode observability matrix [Porter and Crossley 1972] CodeΦ.


It is of utmost importance to observe that these measures of controllability
and observability are quantitative. This is in contrast to the qualitative
answer – yes or no – obtained by checking the rank of the controllability
and observability matrices as in [Åström and Wittenmark 1990]. Chapters
3 and 4 will treat mode controllability and mode observability more in
detail.
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Σ Aode


Ψ Φ


∫


ΣDode


Bode Code


zz


xdxd


u y


·


·


Fig. 2.2 Block diagram of a ODE matrix model showing dependence between mode
coordinates z, dynamic states xd, inputs u and outputs y.


Whereas the mode controllability and mode observability relate inputs and
outputs to the mode, it may also be interesting to quantify how important a
dynamic state is to the mode. This is conveniently done by computing the
participation factors [Pérez-Arriaga 1982] from the left and right
eigenvectors as,


pki = Ψik Φki


The participation factor pki is dimensionless and gives a relative measure of
how much element k in xd participates in mode i.


With zero input the free motion of mode i depends only on its eigenvalue
λi=σi+jωi and its initial value zi(0),


zi t( ) = zi 0( )eλ it = zi 0( )eσ ite jω it


For electro-mechanical power system dynamics, the motion is typically
oscillatory with frequency specified by ω while the oscillation envelope
has a time constant equal to 1/|σ|, where -σ  is the absolute damping.
Improving damping of a mode is thus a matter of making its σ as negative
as possible. The free motion may also be described using the initial value
of xd,


zi t( ) = Ψixd 0( )eλ it
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It is obvious that the left eigenvector Ψi determines how much mode i is
excited by xd(0). Mode i contributes with the following motion to the states
xd(t),


Φiz i 0( )eλ it (2.9)


The right eigenvector Φi thus gives a measure of how well mode i is
coupled to each state. Note that the motions of all modes are summed for
each state.


Introducing output feedback with the simple control law u=Ky modifies the
system dynamics. A nonzero direct matrix Dode gives an algebraic loop,
that may complicate simulations but is easy to solve,


u = I − KDode( )−1KCodexd


In modal coordinates, the new system description is,


ż = Λ + ψBode I − KDode( )−1KCodeΦ[ ]z (2.10)


By instead eliminating u, a different but equivalent expression results,


ż = Λ + ψBodeK I − DodeK( )−1CodeΦ[ ]z
The equivalency is based on the equation,


I − KDode( )−1K = K I − DodeK( )−1


that is proved by multiplying from the left with I-KDode and from the right
with I-DodeK.


From (2.10) the sensitivity of eigenvalue i to changes in the scalar gain K
can be obtained. For small gains (or if Dode is zero) I-KDode≈I, which
gives,


∂λ i


∂K
= ΨiBodeCodeΦi (2.11)


For a single input single output (SISO) system Bode and Code are column
and row matrices respectively. As the resulting number is complex it gives
both direction and magnitude of the movement for small values of K. This
is in full accordance with the comments on the modal controllability and
observability matrices above.
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There are methods to determine more qualitatively which parameter affects
what eigenvalue [Reinschke 1994]. These techniques set up matrices that
indicate if the mode controllability and observability matrices are zero or
not. As power systems are connected and there is no clear direction of
cause and effect, exactly zero controllability or observability is very
unlikely. Although being efficient, at least for reasonably small systems,
such structural measures are therefore of little use for power systems
control [von Löwis 1996].


The Linear Differential-Algebraic Equation


The modal matrices of a linear DAE are defined as in (2.12) and (2.13),
starting out from the compact description of (2.3).


AΦdae = EΦdaeΛ (2.12)


ΨdaeA = ΛΨdaeE (2.13)


Partitioning the eigenvectors of (2.12) into a dynamic part and an algebraic
part corresponding to xd and x̃ a  clarifies the matrix dimensions


A11 A12
A 21 A 22










Φdae,d
Φdae,a










= I 0
0 0










Φdae,d
Φdae,a








Λ


Carrying through the multiplication and solving for Φdae,a yields,


A11 − A12A 22
−1A 21( )Φdae,d = Φdae,dΛ


and


Φdae,a = −A 22
−1A 21Φdae,d (2.14)


where the parenthesized expression is recognized as Aode. It is now evident
that the DAE description shares the eigenvalues and consequently the
dynamic part of the eigenvectors with the ODE description. The algebraic
part of the DAE eigenvectors can be obtained from the dynamic part by a
simple transformation.


Similar expressions naturally apply for the left eigenvectors. Equation
(2.13) can be rewritten as,


Ψdae,d Ψdae,a[ ] A11 A12
A 21 A 22










= Λ Ψdae,d Ψdae,a[ ] I 0
0 0
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which can be separated into,


Ψdae,d A11 − A12A 22
−1A 21( ) = ΛΨdae,d


and


Ψdae,a = −Ψdae,dA12A 22
−1 (2.15)


Fig. 2.3 illustrates the connections between different coordinates for a DAE
system as compared to an ODE system. By tracing the arrows of the block
diagram the same expressions as above can be obtained.


Σ A11


Ψ Φ


∫


A12 A21


Σ–A22
–1


B2 C2


ΣD1


B1 C1


zz


xdxd


xa ea


u y


·


·


           


Σ Aode


Ψ Φ


∫


ΣDode


Bode Code


zz


xdxd


u y


·


·


Fig. 2.3 Block diagram of a DAE (left) and an ODE matrix model (right) showing
dependencies between mode coordinates z, dynamic states xd, algebraic
variables xa, algebraic equation variables ea, inputs u and outputs y.


Φdae,d and Ψdae,d are equal to the ODE modal matrices Φ and Ψ and the
corresponding eigenvectors have the same interpretation. The columns of
Φdae,a show how the mode motions appear in the algebraic variables, while
the rows of Ψdae,a describe how the variables ea, which summed up to zero
in algebraic equations, affect the modes. Note that an algebraic equation
may sum up current injections using voltage as algebraic variables, so that
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element i of xa and element i of ea have different units. The corresponding
eigenvector elements share the same property.


The expressions for the DAE eigenvectors given above are computationally
efficient. The additional operations required to obtain the algebraic parts of
the eigenvectors are not demanding. Routines that compute only selected
eigenvalues and their eigenvectors are of course even more efficient. They
are, however, less accessible and are for example not included in Matlab
version 4.2. Matlab can, on the other hand, offer direct computation of the
DAE eigenvectors, which may seem attractive. Entering the matrices A and
E then gives the right eigenvectors, while use of their transpose yields the
left eigenvectors since


ΨdaeA( )T = ΛΨdaeE( )T


A TΨdae
T = EΨdae


T Λ


The Matlab routine returns a diagonal matrix with eigenvalues and a matrix
with right eigenvectors. The problem is that these matrices have the same
size as A and E, which means that a number of the eigenvectors correspond
to algebraic dynamics with infinite eigenvalues. The computation of these
infinite eigenvalues and the associated eigenvectors increase the
computation time considerably. Again the problem with scaling of the
eigenvectors arises. To guarantee consistency the DAE eigenvectors should
all be computed from Φi and Ψi (for which ΨiΦi =1) by using (2.14) and
(2.15).


When the DAE system is transformed into modal coordinates, the input,
output and modal matrices differ as compared to the ODE case. However
the resulting modal controllability matrix ΨdaeBdae  and the modal
observability matrix CdaeΦdae are the same.


The control law u=Ky  in a SISO DAE system changes the system
dynamics: Adae is replaced by Adae+BdaeKCdae. According to [Smed 1993]
the sensitivity of mode i to a small gain K is,


∂λ i


∂K
=


Ψdaei
∂


∂K
A dae + BdaeKCdae( )Φdaei − λ iΨdaei


∂E


∂K
Φdaei


ΨdaeiEΦdaei


where Ψdaei and Φdaei are the left and right DAE eigenvectors
corresponding to mode i. If E  contains only zeroes and ones, and if
ΨdaeiEΦdaei =1 the expression is substantially simplified,
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∂λ i


∂K
= ΨdaeiBdaeCdaeΦdaei (2.16)


Note that if each one of the input and output matrices contain only a single
nonzero element being one, the eigenvalue sensitivity is obtained by simply
multiplying one element of each of the right and left eigenvectors.


Model Reduction


As in all dynamic modelling, the purpose of the model should determine
the complexity or resolution of the model. Highly simplified models are
well suited for analytical treatment and intuitive understanding. The results
obtained are then general and can easily be related to the included
parameters, but their validity for the original system is limited. A model
with full complexity would be more faithful but is in general too involved
to be practically useful. In fact the term full complexity of a power system
model is never used. Any power system model is instead a compromise
between a good representation and a size that can be handled both
regarding computational effort, setting of parameters and interpretation of
results. An important technique to simplify a model, while maintaining its
validity for a particular purpose is to remove dynamic states through model
reduction. This is particularly useful in association with control design
techniques such as H∞ and L Q G [Maciejowski 1989], that produce
controllers whose complexity is related to that of the controlled system. To
demonstrate the relationships between different model types, three
examples of model reduction based on modal analysis are given here,


• time scale decomposition;
• modal equivalencing;
• transfer function residues.


If the network dynamics are included in a model for small disturbance
stability analysis, they will show up as eigenvalues that are considerably
faster than the electro-mechanical modes. Through time scale
decomposition and a proper choice of coordinates the states may be
partitioned in slow and fast ones, leading to,


I 0
0 ε










d


dt
∆xslow
∆xfast










= A
∆xslow
∆xfast










(2.17)


which can be thought of as the result of improving the condition number of
the system matrix. The elements of the diagonal matrix ε can be thought of
as time constants and are small. By setting ε to zero (2.17) turns into the
differential-algebraic equation (2.3). The fast states now algebraically







26 2. Modelling


depend on the slow ones, and their eigenvalues and eigenvectors are
eliminated. The reduction ignores the influence of ε on the eigenvalues of
the slow states. In [Sauer et al 1987] expressions are given for how to take
ε into account, so that the slow eigenvalues can be kept arbitrarily close to
their original positions.


Although having reduced the model to contain only electro-mechanical
modes, the number of states may still be too large. Then the eigenvectors
can be used to formulate a simpler model that focuses only on the modes of
interest, while omitting others. In damping studies the slowest inter-area
mode is often of primary concern as it usually exhibits low damping. Its
right eigenvector typically reveals that the system is split into two groups
of machines, that swing against each other. Using this knowledge, the
system can be reduced by modelling each machine group as an equivalent
machine. The simplified system has two electro-mechanical modes; the
inter-area mode and the rigid body mode, where the machine angles move
in the same direction. Aggregating machines into groups that are modelled
as equivalent machines is called dynamic equivalencing. Coherent modal
equivalencing requires the machines within a group to swing exactly in
phase with each other. [Ramaswamy et al 1995] briefly mentions
coherence in order to explain synchronic modal equivalencing, where
machines that swing in proportion to one or more reference machines may
be algebraically represented.


The opposite of the inter-area mode is the local mode, in which a single
machine or machine group swings against a large system. This practically
does not excite the rigid body mode. A suitable model is then the single
machine infinite bus system, where the large system is reduced into an
infinite bus with constant frequency. This single mode system is the most
widely used model for electro-mechanical power system dynamics and is
one of the test systems of Section 2.3. As the structure is simple, analytical
treatment is possible which will be made use of in the following. A
nonlinear model can also be handled, which is shown in Chapter 5.


The equation for a transfer function of (2.6) requires all the eigenvalues of
the system to be included in all transfer functions. This is mostly
unnecessary, which is realized by expanding the transfer function in partial
fractions as,


Y s( )
U s( )


= G s( ) = Dode + R k


s − λkk =1


n


∑
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where Rk is the residue of the G(s) at the eigenvalue or pole λk. For a SISO
system it is determined from input, output and modal matrices,


R k = CodeΦkΨkBode


The close relationship to the modal representation is obvious, as Rk can be
said to quantify the participation of mode k in the dynamics as seen
between the input and the output. The order of G(s) may be reduced by
omitting terms of the sum. This is done by sorting them by descending
residues starting with the most dominant poles and truncating the series
when the residues are considered negligibly small. Routines for
determining the dominant pole spectrum are found in [Martins et al 1996].


2.3 Test Systems


Three test systems have been used. First a single mode system was chosen
as it can be treated analytically. It can also demonstrate the influence of
different control laws on one particular mode. Second a three machine
system was selected as the least complex multi-mode system. It has a
meshed network and thus represents the simplest nontrivial topology and is
a complement to the longitudinal structure of the single mode system. The
three machine system requires numerical computations as does the third
test system which has twenty-three machines. It is a CIGRÉ model of the
Swedish national power system, developed for comparing transient
stability and voltage collapse performance of different simulators. Whereas
the two first test systems are chosen for being manageable, the CIGRÉ
model represents a realistic network topology with more detailed
component models.


While the single mode system is manually modelled, the two others are
modelled using EUROSTAG as described in Section 2.1. The resulting
matrices of the DAE description contain the DAE matrix equations of the
individual components and their controllers. For a system with k
components, the matrices have the following structure:
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Ek
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dt
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xk
v
























=


A1 B1
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A k Bk
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While block matrices on the diagonal represent internal dynamics, the off-
diagonal blocks specify the connections to other components, which are
realised mainly through the network. The network and the passive loads are
represented by algebraic equations for the current injection at each bus
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using real and imaginary parts of the bus voltages v as algebraic variables.
The lower right block matrix describing the network, equals the differential
bus admittance matrix, Ybus.


Single Machine Infinite Bus System


The single mode system is a standard example, found in textbooks like
[Anderson and Fouad 1993] and [Kundur 1994]. It includes a synchronous
generator connected to an infinite bus through a transformer and a
transmission line circuit, illustrated by Fig. 2.4.


E’∠ δ V∠ θ V∞∠ 0


Generator


Transformer
Transmission line


Infinite bus
Load


0123


Fig. 2.4 One line diagram of single machine system.


For simplicity, all resistances are neglected and the generator is modelled
as a constant voltage E' with phase angle δ behind the transient reactance
X'd. The system can be described by two differential equations for the
machine and by algebraic equations for the power balance at the load bus,


2H


ωR


dω
dt


= Pm − Pg


dδ
dt


= ω − ωR


Pload = Pg + Ptl


Qload = Qg + Qtl


(2.18)


H is the inertia constant of the machine in MWs/MVA and ωR the nominal
value of its electrical angular frequency ω in rad/s. Pm denotes the constant
mechanical power with which the turbine drives the generator. Pg+jQg and
Ptl+jQtl represent active and reactive power coming from the transformer
and the transmission line into the load bus, where the load is Pload+jQload.
The internal angle δ and the time derivative ω are given in rad and rad/s
respectively. All other variables are normalized using MVA rating and rated
bus voltage of the machine as base values.


Let Xt  and Xtl be the series reactances of the transformer and the
transmission line. If Y'd and Ytl represent 1/(X'd+Xt) and 1/Xtl respectively,
the power entering the load bus can be expressed as,
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Pg = Yd
' E' V sin δ − θ( )


Qg = Yd
' E' V cos δ − θ( ) − Yd


' V 2


Ptl = −YtlVV ∞ sin θ


Qtl = YtlVV ∞ cos θ − YtlV
2


(2.19)


Introduce the state vector [ω δ θ V]T and linearize. Assuming negligible
variation in voltage magnitude the linearization gives,


M 0 0
0 1 0
0 0 0
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Pload (2.20)


with M and the synchronizing coefficients K defined as,


M = 2H


ωR


Kδδ = −Y ' d E' V cos δ − θ( ) = −Kδθ = −Kθδ


Kθθ = −Y ' d E' V cos δ − θ( ) − YtlVV ∞ cosθ


(2.21)


System data for the single machine system are taken from the field test in
Chapter 6 and are given in Appendix A.


The model of (2.20) can be generalized to the multi-machine case with an
arbitrary network. The generator buses are then numbered 1..n, and the
load buses are numbered n+1..n+m. The state vector is then expanded as,


  


∆ω
∆δ
∆θ


















=
∆ω1 L ∆ωn[ ]T
∆δ1 L ∆δn[ ]T
∆θn+1 L ∆θn+m[ ]T
























so that variables without subscript now denote vectors rather than scalars.
The matrix equation is practically unaltered,


M 0 0
0 I 0
0 0 0
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+
0
0
−I
















Pload (2.22)


where M is a diagonal matrix with 2H/ωR of each generator on the diagonal
and Pload is an m-dimensional vector with the active power injection at
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each load bus. An element in the matrices of synchronizing coefficients,
Kδθ or Kθδ is now defined as,


Kδθ ,ij = Yi, j+nEi
' Vj+n cos δi − θ j+n( ) = Kθδ , ji (2.23a)


where Yij is element (i,j) of the bus admittance matrix, that specifies the
admittance between buses i and j, that may be either internal generator
buses or load buses. Similarly element (i,j) of Kδδ and Kθθ are defined as,


Kδδ ,ij =


YijEi
' Ej


' cos δi − δ j( ) i ≠ j


− Kδδ ,ij
j=1
j≠i


n


∑ i = j
 
 














(2.23b)


K θθ ,ij =


Y i +n , j+nVi +nV j+n cos θi +n − θ j+n( ) i ≠ j


− K θθ ,ij
j=1
j≠i


m


∑ i = j
 
 














(2.23c)


Note that Kδθ is the transpose of Kθδ and that both Kδδ and Kθθ are
symmetric. By applying (2.4) the load buses may be eliminated. This gives
the ODE version of the system found in many textbooks.


Three Machine System


A three machine system has two oscillatory electro-mechanical modes and
thus forms the first step towards a general multi-machine case. The nine
bus system of [Anderson and Fouad 1993] is selected for having the
generic meshed network with one mesh, see Fig. 2.5.


This system, also known as the WSCC 9 system, is commonly used in
other studies such as for voltage stability [Arnborg 1997], and controller
design [Chen et al 1995]. As both mode and network structure are
uncomplicated, the results can easily be coupled to them. This makes the
three machine system the basis for the development of control laws that can
be applied in a general case.
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N8


N9 N3N2 N7


N5 N6


N1


N4


S3S2


H1


100+j35


125+j50 90+j30


71.6+j27


163.0+j6.7 85.0-j10.9


Fig. 2.5 Three machine system with generation and load in MVA.


A third order synchronous generator model is selected as this is the
simplest machine model of EUROSTAG. It is sometimes referred to as the
one-axis model, as it includes the direct axis but not the quadrature axis
circuit. Damper windings are not included, and although saturation can be
represented, this option is not used. The magnetization is controlled by a
proportional AVR measuring terminal voltage. The mechanical input
power is kept constant. One generator with AVR is described by eight state
variables in the linearized DAE system model.


x gen = λ f V ref E FD Tm ω δ I q I d[ ]T


The field flux linkage λ f, the mechanical angular velocity ω and the
machine angle δ are the dynamic states. (The machine angle is called teta
in EUROSTAG.) AVR setpoint Vref, field voltage EFD, mechanical torque
Tm, stator current along the d and q axis Id and Iq are algebraic states. The
structure of the DAE model of a generator with AVR and constant
mechanical power is described by (2.24), where a dot denotes a non-zero
matrix element. Vbusg is the voltage at the generator terminals.
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(2.24)


Both transformers and lines are modelled as series impedances but lines
additionally have shunt admittances at each end. Loads are represented by
impedances. Transformers, lines and loads can be modelled by expressing
the current injections at each bus in the bus voltages. As the injections sum
up to zero at each bus, the linearized network can be described as a matrix
formulation of Kirchhoff's current law:


0 = Igen − YbusVbus (2.25)


where Ybus is the differential bus admittance matrix and Igen holds the
current injections of the generators.


In EUROSTAG, real and imaginary parts of the voltage at each bus enter
the state vector as separate elements as in Vbusg of (2.24). The full state
vector holds the states of the controlled machines followed by the voltage
variables. It thus contains 9 dynamic states and 33 algebraic states (5 per
machine and 2 per network bus):


  
xT = xgen1


T xgen2
T xgen3


T Vbus1
T L Vbus9


T[ ] (2.26)


Using the state vector of (2.26), the full DAE system description is
obtained by merging the descriptions of the network and all components,
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Note that while Agen and Egen are unaltered from (2.24), Bgen is now
related to the voltages at all buses, and Cgen represent the current injections
of the machines. Referring to Fig. 2.5 for notation, a sparsity plot of the
system matrix A of (2.27) is shown in Fig. 2.6.
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N6      
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N8      
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Fig. 2.6 Sparsity plot of the DAE system matrix A: dots represent nonzero elements
and block matrices associated with the individual machines and buses are
indicated.


Data of lines, transformers and machines are taken from [Anderson and
Fouad 1993], while models of AVR and governor are described in
Appendix B. The normal load situation in Fig. 2.5 from [Anderson and
Fouad 1993] gives an operating point with one electro-mechanical mode at
1.3 Hz and one at 1.8 Hz. The machine angle elements of the
corresponding right eigenvectors are given in Table 2.1.


Machine 1.3 Hz mode 1.8 Hz mode


H1 0.277e-j4° 0.029e-j111°


S2 0.818ej179° 0.282e-j127°


S3 0.495e-j179° 0.948ej62°


Table 2.1 Machine angle elements of the right eigenvectors corresponding to the
oscillatory electro-mechanical modes.
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If the arguments of the eigenvector elements are concentrated around two
values that are separated by 180°, one of them may be used as reference
and the angle information may be described as in-phase or anti-phase. This
can be illustrated by a bar graph as in Fig. 2.7 and is known as the mode
shape. It shows that all machines are active in the 1.3 Hz mode, while
mainly S2 and S3 swing against each other during the 1.8 Hz mode.


−0.5 0 0.5


H1      


S2      


S3      


1.3 Hz mode


−0.5 0 0.5


H1      


S2      


S3      


1.8 Hz mode


Fig. 2.7 Mode shape of the 1.3 Hz mode (left) and the 1.8 Hz mode (right).


Twenty-three Machine System


The twenty-three machine system is the Nordic32 or the Swedish test
system of the report Long Term Dynamics Phase II by CIGRÉ TF 38-02-08
[CIGRÉ 1995]. The report compares long term dynamics of five test
systems using ten different simulation tools. Although being fictitious the
Swedish test system has dynamic properties similar to the Swedish and
Nordic power system. It is included here to illustrate what implications the
studied damping schemes would have on a realistic system.


As can be seen in Fig. 2.8, the system is divided into three Swedish areas
denoted Southwest, Central, North and and a foreign part named External.
The external and northern regions are characterized by a large amount of
hydro power generation, while the other two hold thermal power plants.
The External and the Southwest areas are essentially self-supporting in
contrast to the Central region, which imports half its power consumption
from North.


The nineteen 400 kV transmission system buses in Fig. 2.8 are given four-
digit node numbers starting with 4. Similarly the two 220 kV buses and the
eleven 130 kV buses of the subtransmission system have numbers starting
with 2 and 1 respectively. Nine pure load buses at 130 kV have two-digit
numbers and are connected to the 400 kV network via transformers with
tap changers. Out of the totally forty-one buses, twenty are generator buses,
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holding twenty-three synchronous generators. Transformers are shown as
lines that connect different voltage levels.
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Fig. 2.8 Outline of the twenty-three machine system.
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The EUROSTAG model of the twenty-three machine system has the very
same structure as that of the three machine system. The main difference,
except for the number of components, is that more detailed subsystem
models are employed. This applies in particular for the machines and their
controls, but also for loads and transformers. Although the test system is
designed for simulations of transient stability and long term dynamics, the
detailed modelling makes it suitable also for small disturbance stability
analysis. The numerical data of the entire system is found in [CIGRÉ 1995]
while the modifications that are used here are outlined in Appendix C. The
model used in the following has 324 dynamic states and 221 algebraic
states giving a total size of the A matrix of 545x545 elements.


As the machine model should reproduce transient behaviour, the fifth order
model of EUROSTAG is chosen [EUROSTAG]. It includes damper
windings in both the d and q axis as well as saturation modelling. The
excitation system is modelled as a second order system. The AVR includes
a Power System Stabilizer (PSS) with output limited to ± 5% and limiters
for both stator and rotor currents. The current limits play a very important
role when the system is close to voltage collapse, but are not needed when
studying damping. While generators of thermal power plants operate with
constant mechanical power, the generators of hydro power plants are
equipped with governors and models of the water ways.


The machines can be divided into three groups: ten round rotor generators
in thermal power stations (4042, 4047_1, 4047_2, 4051_1, 4051_2, 4062,
4063_1, 4063_2, 1042, 1043), twelve salient pole generators in hydro
power stations (at buses 4011, 4012, 4021, 4031, 4071, 4072, 1012, 1013,
1014, 1021, 1022, 2032) and a salient pole synchronous compensator (at
bus 4041). The machines have different ratings, but in each group all use
the same set of parameters (in per unit of machine base) for the generator,
the PSS and the governor.


In the CIGRÉ model, distribution networks are modelled as loads with
voltage and frequency dependencies according to (2.28),


Pload = P0
V
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(2.28a)


Qload = Q0
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(2.28b)
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The voltage dependence of loads is critical when studying voltage collapse
or damping by PSS or SVC, as these are voltage related phenomena. A
realistic improvement of the distribution systems modelling would be to
incorporate dynamic voltage dependence as in [Karlsson and Hill 1994].


Detailed transformer models with tap changer control are used for the nine
load transformers and for the four transformers connecting the 130 kV area
to nodes 4044 and 4045. The remaining four transformers, all in the area
North, have fixed ratios. Tap changer action and load dynamics are both
very important for the load restoration, that is an important cause of voltage
collapse. For small disturbance stability studies, however, neither is usually
considered. But as the tap changers are already included they are retained
for convenience.


The three scenarios proposed in [CIGRÉ 1995] are all designed to cause a
voltage collapse, similar to that of the Swedish black-out in 1983 [Kearsley
1987]. In all three cases a generation unit is tripped, in one case after the
tripping of the important transmission line between 4011 and 4021. The
resulting new load flow situation causes generator current limiters to act
and subsequently the tap changers operate to restore the voltage. As the
load increases faster than the voltage, a voltage collapse occurs.


Tripping of a generator is a large disturbance. A new scenario is therefore
required for small disturbance stability studies. [CIGRÉ 1995] suggests
two load flow cases characterized as peak load and high load. The high
load case for the intact network is used as base case. The damping
controller to be designed should manage different operating points.
Disconnecting a transmission line substantially changes the load flow. It
can also change the swing mode pattern of the generators, which is seen in
the eigenvectors of the linearized system. The double line between 4044
and 4045 is found to have this influence, and although unlikely its tripping
is not unrealistic.


In order to obtain a reasonable voltage profile for the fault case with line
4044-4045 out, a few changes are necessary. Generator buses were
previously modelled as PQ buses making all AVRs passive. This is
improved by instead using PV buses. The voltage setpoints are taken from
the base case, but are adjusted so that the reactive generation limits that are
unaltered, are not activated in either case.


All modes are well damped, which is mainly due to the fact that PSS units
with perfectly matching parameters are installed on all generators. To
worsen the situation, the PSSs of the generators at all thermal power plants
were disengaged. This is not unrealistic and reduces the damping of modes
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where machines in the Central and Southwest participate. This use of PSS
is the same in the base case and the fault case, where the line N4044-
N4045 is disconnected.


The control system design will aim at improving damping of the least
damped modes in the fault case and therefore the three modes of Table 2.2
have been chosen for closer study.


Mode Base case Fault case


1 -0.14±j3.38 -0.09±j3.09


2 -0.36±j5.74 -0.21±j4.47


3 -0.31±j4.62 -0.22±j4.64


Table 2.2 Eigenvalues of the selected modes in the base case and in the fault case.


Note that the fault substantially changes the frequency of Mode 2, which is
the reason for numbering the modes rather than naming them by their
frequency. The modes are instead identified by their mode shape shown in
Fig. 2.9a. The geographical shape of the mode is shown in the network
diagram of Fig. 2.9b, where the absence of the transmission line N4044-
N4045 in the fault case is apparent. Whereas Mode 1 has nearly identical
shape in both cases, Mode 2 and 3 are identified as follows: Mode 2 is an
oscillation between the machines on each side of the disconnected line, and
is therefore expected to change radically. Mode 3 is a swing mode between
two groups, where N4051 is close to the disconnected line and changes
side due to the fault.


It is evident that both frequency, damping and structure of the mode is
altered by the fault. As a damping system should be able to handle such
changes, the chosen fault is a suitable challenge.
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Base case: Mode 2
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Fault case: Mode 2
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Base case: Mode 3
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B4072   
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Fault case: Mode 3


Fig. 2.9 a Mode shapes of the study modes for base case (left) and fault case (right).
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Base case: Mode 1 Base case: Mode 2 Base case: Mode 3


Fault case: Mode 1 Fault case: Mode 2 Fault case: Mode 3


Fig. 2.9 b Swing patterns of the study modes for the base case (upper graphs) and the
fault case (lower graphs). The two swing directions are illustrated by '*' and
'o' respectively. Machines with less than 10 % of the peak amplitude are not
included.


2.4 Mechanical Equivalents


To gain insight into the behaviour of complex systems, the existence of a
well understood analogy is often useful. Electromechanical dynamics of
power systems can for example be transformed into purely electrical or
mechanical systems. Mechanical equivalents are for example employed in
[Elgerd 1971] and [Kimbark 1948]. Animation of power system dynamics
using a mechanical equivalent is described in [Gronquist et al 1996]. The
models described in the following are used throughout the thesis to provide
a more intuitive insight into the power system dynamics.


Spring-Mass Model of an Inter-Area Mode


Fig. 2.10 shows a spring-mass model, that exhibits the dynamics of the
inter-area mode mentioned in Section 2.2.
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M1
F3


k1 k2


x1
x3


M2


x2


F2F1


Fig. 2.10 Spring-mass model of an inter-area mode.


The masses M1 and M2, with positions x1 and x2, symbolize the machine
groups that swing against each other. F1 and F2 is the constant mechanical
power input of each equivalent machine. Transmission lines are
represented by two springs with constants k1  and k2. A force F 3,
corresponding to controlled active power, acts on the node with position x3
between the springs. Force balances at positions x1, x2 and x3 give,


 


M1˙̇x1 = k1 x3 − x1( ) + F1


M2˙̇x2 = k2 x3 − x2( ) − F2


0 = k1 x1 − x3( ) + k2 x2 − x3( ) − F3


A DAE matrix model may now be formulated by introducing the states v1
and v2 as horizontal velocities of the two masses,


diag


M1
M2
1
1
0
















































d


dt


v1
v2
x1
x2
x3


























=


0 0 −k1 0 k1
0 0 0 −k2 k2
1 0 0 0 0
0 1 0 0 0
0 0 k1 k2 − k1 + k2( )


























v1
v2
x1
x2
x3


























+


1 0 0
0 −1 0
0 0 0
0 0 0
0 0 −1


























F1
F2
F3


















(2.29)


By creating block matrices as indicated by the lines above, the model
structure becomes apparent,


diag
M
I
0
































d


dt


v
xd
xa


















=
0 Kdd Kda
I 0 0
0 Kad Kaa


















v
xd
xa


















+
Kdu


0
Kau
















F


This generalization is valid for any configuration of masses and springs.
Note that the same statement, but for a power system, was made for the
power system model of (2.22), that has the same structure. The agreement
between the electro-mechanical model and its mechanical equivalent is
thus demonstrated.
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The system of (2.29) has four eigenvalues,


λ1 = λ2
* = j


k1k2


k1 + k2


1
M1


+ 1
M2










λ3 = λ4 = 0


(2.30)


where the first two are oscillatory and form the equivalent to the electro-
mechanical inter-area mode, whereas the last two form a rigid body mode.
The right and left eigenvectors of the oscillatory mode are,


Φ1 = Φ2
* = λ1


M1


−λ1


M2


1


M1


−1


M2
















T


Ψ1 = Ψ2
* = 1


λ1


−1


λ1
1 −1













κ


(2.31)


where


κ = M1M2


2 M1 + M2( )
is introduced so that Φ1Ψ1=1. The right and left eigenvectors of the rigid
body mode are,


Φ3 = −Φ4 = 0 0 1 1[ ]T


Ψ3 = −Ψ4 = 1
M2


1
M1


0 0














(2.32)


Φ3 and Φ4 describe a motion where the entire system, with masses and
springs, slide in either direction as a rigid body. This term is used in power
system contexts to describe a uniform motion of all synchronous machine
rotor angles. In a power system one of the zero eigenvalues moves away
from the origin if damping relative to fixed frequency is introduced. The
other is usually eliminated by appointing one bus as reference, to which all
angles are related. This reduces the length of the state vector by one
element.


Spring-Mass Model of a Local Mode


The mechanical equivalent of the single machine infinite bus system can be
obtained from the system above. M2 is then turned into a fixed reference –
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the infinite bus – by setting M2=∞ and fixing its position to zero. The rows
and columns corresponding to v2 and x2 can be removed together with the
states themselves as x3 is renamed to x2,


M1
1


0


















d


dt


v1
x1
x2


















=
0 −k1 k1
1 0 0
0 k1 − k1 + k2( )


















v1
x1
x2


















+
1 0
0 0
0 −1


















F1
F2










(2.33)


Equation (2.33) describes the system of Fig. 2.10 and is equivalent to
(2.20), previously mentioned.


M1
F2


k1 k2


x1
x2


F1


Fig. 2.11 Spring-mass model of the single machine infinite bus system.


This system has one complex conjugate pair of eigenvalues,


λ1 = λ2
* = j


k1k2


k1 + k2


1
M1


which could have been obtained by setting M2 in λ1 and λ2 of the two-
mass system to infinity. The right and left eigenvectors of this mode are,


Φ1 = Φ2
* = λ1 1[ ]T


Ψ1 = Ψ2
* = 1


2λ1


1
2
















Pendulum Equivalent to Local Mode


The spring-mass models above are naturally not the only mechanical
systems, that can be constructed as dynamic equivalents to power systems.
Fig. 2.12 shows the single machine system of 2.3 and a mechanical
pendulum equivalent that also exhibits visual similarities.
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E’∠ δ


V∠ θ


V∞∠ 0


P F
l1
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x1


x2
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Fig. 2.12 Single machine system and a mechanical equivalent.


The pendulum is vertical and consists of a mass suspended in a massless,
but flexible string. The active load P of the power system is represented by
a force F acting on the string. The deflections x1 and x2 from the stationary
point correspond to the phase angles δ and θ. By assuming that x1 and x2
are small a linear model can be formulated. Let the force along the lower
and upper part of string be F1 and F2 respectively. Vertical force balances
at the mass center and the attack point of F yield (2.34), that applies for
small angles α1 and α2,


F1 cos α1 = Mg
F2 cos α2 = F1 cos α1


⇒ F1 ≈ F2 ≈ Mg (2.34)


Horizontal force balances at the same points give,.


M l1 ˙̇α1 + l2 ˙̇α2( ) = −F1 sin α1


F1 sin α1 = F2 sin α2 + F
(2.35)


F1 and F2 are eliminated and the equations are linearized, leading to


l1 ˙̇α1 + l2 ˙̇α2 = −gα1


1


M
F = g α1 − α2( ) (2.36)


α1 and α2 are now replaced by x1 and x2 through the transformation,
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x1 = l1α1 + l2α2
x2 = l2α2



⇔


α1 = 1
l1


x1 − x2( )


α1 − α2 = 1
l1


x1 − 1
l1


+ 1
l2










x2














By introducing v1 as the velocity of x1 the DAE system description is
complete,


1
1


0


















d


dt
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1 0 0


0
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+
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0


− 1
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F (2.37)


The eigenvalues of this system are,


λ1 = λ2
* = j


g


l1 + l2


and the corresponding right and left eigenvectors are,


Φ1 = Φ2
* = λ1 1[ ]T


Ψ1 = Ψ2
* = 1


2λ1


1
2
















It is evident that the pendulum as described by (2.37) is equivalent both to
the spring-mass model of (2.33) and to the single machine infinite bus
system of (2.20). It is therefore natural, that both eigenvalues and
eigenvectors look like those of the other local mode system.
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3
Control Signals


… in which active power mode controllability is determined from DAE
models of the test systems and a generalization of mass-scaled electrical
distance is presented.


Mode controllability is the ability of a control signal or an actuator to affect
a certain mode. In power system damper design, this has relevance for the
decisions regarding:


• actuator type,
• actuator location,
• actuator rating.


Section 3.1 treats the controlled active power load that is the chosen
actuator type.


In section 3.2, the methods for determining the active power mode
controllability in a DAE power system model are outlined. This is used to
find out where in the system a certain amount of controlled active power is
most useful. This is very different from the more common state
controllability study [Åström and Wittenmark 1990], which checks
whether all the dynamics of the system can theoretically be controlled from
the inputs or not.


As several actuators will be used, the geographical variation of the mode
controllability of active power is of central interest. This is determined
analytically for the mechanical systems in Section 3.3 and numerically for
the multi-machine test systems of Section 2.3. The controllability in a
multi-machine case with a general network is visualized inspired by the
bending modes of flexible mechanical structures.


Actuator rating cannot be handled explicitly with linear methods, as
limitation is a nonlinear phenomenon. Although not treated here, nonlinear
control laws can partly be assessed with linear mode controllability
measures. The control signal is then represented by its fundamental, which
is the component that contributes to damping.
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3.1 Modelling the Controlled Load


Thermal loads have several properties that make them actuator candidates
in a damping system based on load control. They have a thermal inertia
that makes interruptions in the second scale uncritical. This also permits
temporary connection when the heater is off. The reactive power
consumption is very low, which makes switching on and off
uncomplicated. If the rating is sufficiently high also a small number of
controlled loads will have impact on power oscillations. Disconnecting one
or more large loads at brief power consumption peaks can also partly
replace expensive peak generation from for example gas turbines.


Switching a large load on and off periodically gives an active power
variation shaped like a squarewave. A Fourier series expansion of a
squarewave between 0 and P yields an offset of 0.5P, a fundamental of
4P/π and harmonics. These components have different impact on the power
system. The offset is a change in the load flow corresponding to half the
load. The fundamental agrees in frequency with the sinusoidal motions of
the power oscillations and is the main control action. The harmonics
together form an impulse like waveform, with less obvious effects.


As offset and harmonics do not contribute to damping, they can be omitted
in the damping analysis. The effect of the fundamental can be analysed
using linear models with continuously variable active power as the control
variable. Although serving as a simplification here it is not unrealistic:
PWM control of the heating elements would offer true continuous variation
or several elements could be switched individually one at a time which
makes power changes quasi-continuous.


The results from studying active loads described as above are equally valid
for other components featuring freely controllable active power. Examples
of these are a self commutated HVDC link using PWM and a SMES
(Superconducting Magnetic Energy Storage) with a self commutated power
electronic network interface.


So-called braking resistors have been used to cope with large disturbances.
Such resistors are dimensioned so that they temporarily can absorb the
active power from a large power plant, which leads to ratings of up to 1400
MW [Shelton et al 1975]. Braking resistors were previously mechanically
controlled and aimed at improving transient stability [Stanton and Dykas
1989]. The introduction of thyristor control make the resistors suitable for
damping of oscillations [Larsen and Hill 1993] and is a possible
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implementation of the control laws that will be suggested in the following
chapters.


The validity of the results are however limited if a substantial reactive
power consumption is associated with the active power control action. This
is the case for distribution loads that are fed through transformers, cables or
lines with considerable reactive losses. Although not carried out here, the
influence of the reactive power component can be investigated using the
same methodology as for pure active power.


3.2 Computing Mode Controllability


Mode controllability is based on eigenvectors that may be arbitrarily
scaled. Comparisons between different modes (eigenvectors) can therefore
not be done. Comparing the mode controllability of two variables that do
not describe the same physical quantity is difficult for the same reason.
Only variables that represent the same physical quantity and are equally
scaled can be compared. The mode controllability of these variables then
gives a relative measure of their impact on a certain mode.


 


Σ A11


Ψ Φ


∫


A12 A21


Σ–A22
–1


B2 C2


ΣD1


B1 C1
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xdxd


xa ea
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·


·


Fig. 3.1 Illustration of the dependencies between inputs u, outputs y, modes z,
dynamic states xd, algebraic variables xa and algebraic equations ea, in a
matrix DAE model.
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The expressions for mode controllability of a linear DAE matrix model,
differ depending on if the actuator is already introduced as an input
variable or not. The differences are illustrated by Fig. 2.3 which therefore
is repeated here as Fig. 3.1. It indicates that the input vector u influences
the mode vector z through the matrix,


Ψ B1 − A 12A 22
−1B 2( ) (3.1)


In other words, the strength in the coupling from input j to mode i is given
by element (i,j) of the matrix in (3.1) where the part within parentheses
equals Bode. The mode controllability of an input is thus the same
regardless of if the system is formulated as an ODE or as a DAE model.


The algebraic variables and equations are introduced as they simplify the
formulation of the model. Although they are not explicit inputs, it is
possible to check their mode controllability. The modal controllability of
the algebraic variables is given by,


−ΨA12 (3.2)


This expression is, however, of little use as only independent algebraic
variables can be considered as input candidates. An alternative is to
introduce an input as a term in one of the algebraic balance equations, that
sum up to ea, which is zero. The modal controllability of ea is,


−ΨA12A 22
−1 (3.3)


which equals (2.15) that expresses the algebraic part of the left DAE
eigenvector. It quantifies how the balance equation and consequently the
new input affect the modes in z. The balance equation itself is not altered
by the new input, if the control action at steady state is zero. Note that ea
and xa in general represent different entities such as current and voltage.


Finding suitable locations for controlled active loads, in practice means
determining the mode controllability of active power at all candidate load
buses. An accurate and straightforward way to do this is to extend the
model with active power injectors at the buses in question. This produces
an input matrix, that together with the left ODE eigenvectors yields the
mode controllability as in (3.1).


When using EUROSTAG as modelling tool, adding injectors at all buses
increases the number of network components substantially. This makes the
model more difficult to overview. An alternative is to generate the input
matrices directly for the mode controllability study. Modulation of active
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power at a load bus does not affect the machine dynamics directly, so B1 in
(3.1) is zero. Instead it affects the algebraic equation variables ea via the
matrix B2. More specifically, the complex power ∆P+j∆Q gives rise to a
complex current injection ∆iR+j∆iI,


∆iR
∆iI










= B2injection
∆P
∆Q










= 1


V 2
vR vI
vI −vR










∆P
∆Q










(3.4)


where vR+jvI is the bus voltage with magnitude V.


If the system is lightly loaded, all angles are small and the voltage V is
close to its nominal value of one. This makes vI small and vR close to one,
so that B2injection is trivial with elements approximately equal to zero or
one. Assuming that the injected reactive power ∆Q  is zero, the mode
controllability of the injected active power ∆P then approximately equals
that of ∆iR, which simplifies (3.1) into (3.3). Simply extracting the ∆iR
elements from the algebraic part of the left eigenvectors of the original
DAE system model, in this case yields the mode controllability of injected
active power.


If the loading situation of the system does not permit vI to be neglected,
(3.4) must be carried out using the actual values of vR, vI and V from the
load flow calculation. The advantage of this method over adding explicit
inputs to the model is then less obvious as in the case when vI could be
ignored.


An eigenvector element is in general complex valued with a nonzero
argument. It is very important not to confuse this argument with that of a
complex voltage or current, which is a phase angle related to the line
frequency. The argument of an eigenvector element indicates what phase
the motion of the element has during a sinusoidal mode swing, whose
frequency and damping are given by the real and imaginary parts of the
corresponding eigenvalue (see Section 2.2). When the arguments of
eigenvector elements that are compared differ by approximately 180°, the
terms in phase and anti-phase can be used to describe the situation. An
angle reference is then assigned and its angle is added to the arguments of
all eigenvector elements. These are then approximately real, and their
argument can then be replaced by the sign of the real part.


Equation (3.4) shows that the load flow situation affects the mode
controllability of active and reactive power. The measures of controllability
arrived at through eigenvector calculations are therefore strictly valid only
at the linearization point. It seems, however that changing the point of
operation qualitatively leaves the active power controllability of electro-
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mechanical modes unaffected. Only small quantitative changes appear.
Reactive power modulation on the other hand, has an influence on electro-
mechanical modes, that is highly sensitive to changes in load flow, such as
shifting the power flow direction [Samuelsson et al 1995]. This is a general
observation in literature on the use of FACTS and PSS to increase power
system damping. One explanation is that reactive power affects the electro-
mechanical dynamics more indirectly than active power, which makes the
dependence on other factors stronger.


3.3 Controllability of Test Systems


The active power mode controllability will now be investigated for each of
the test systems. The modes and operating points will be those mentioned
in Sections 2.3 and 2.4. The mechanical systems are treated analytically,
while only numerical results are presented for the multi mode systems.


Spring-Mass Inter-Area Mode System


Controlled active power is represented by the force F3 in the DAE model
(2.29). The algebraic equation is a force balance at the coordinate x3. The
controllability of F3 on the swing mode can therefore be obtained from the
algebraic part of the left DAE eigenvectors representing the variables ea of
Fig. 3.1. By using (3.3) this can be computed from the left ODE
eigenvectors in (2.31) as,


−Ψ1A12A 22
−1 =


= κ 1


λ1


−1


λ1
1 −1
















k1


M1


k2


M2
0 0
















T
1


k1 + k2


=


k1


M1
− k2


M2


λ1 k1 + k2( ) κ


(3.5)


The fact that shortening of a spring increases its stiffness k, makes it
possible to interpret (3.5) in terms of distances. F3 thus has the strongest
impact in the immediate vicinity of the masses, and is greatest at the lighter
one. The influence on the mode is positive or negative depending on which
mass is closest. This is very natural as the masses swing against each other.
Equation (3.5) also indicates that the force will have no effect on the mode
at a position for which,


k1


M1
= k2


M2
(3.6)
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If the ratio between the two masses is great, (3.6) indicates that the point
where controllability is lost, will be located close to the heavier mass.


Single Mode Systems


The spring-mass local mode model and the pendulum are closely related to
the spring-mass inter-area mode model. The mode controllability of the
force input can in both cases be obtained by applying (3.3). For each of the
spring-mass model eigenvalues this gives,


1
2λ1


1
2
















k1
0










1
k1 + k2


= k1


k1 + k2


1
2λ1


while the expression for the pendulum is,
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−1


= l2
l1 + l2


1
2λ1


(3.7)


Equation (3.7) is easier to interpret than the previous expression as it uses
the explicit line lengths. The results agree with the rule above that
controllability increases as the point of attack is moved closer to the
swinging mass. As the reference behaves like an infinite mass, the
controllability is zero there.


A comparison between (2.22) and (2.29) shows that for power system
models, the spring coefficients are replaced by synchronizing coefficients
defined as in (2.23). Assuming that the angle and voltage differences
between neighbouring buses are small, these factors of the synchronizing
coefficients may be omitted leaving only the admittances Yij. The
impedance of a line is sometimes called electrical distance as it is
proportional to the length of the line. The synchronizing coefficients thus
have the same inverse relation to distance as the spring coefficients.


The point of zero mode controllability in the spring-mass inter-area mode
system is characterized by (3.6). Similarly, in the power system
counterpart, the mode controllability of active power is lost when the mass-
scaled electrical distance is the same to both machines, as shown in [Smed
and Andersson 1993]. This point is expected to be situated close to the
larger machine if they are of different size.
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Three Machine System


The three machine system is too complex to be handled analytically.
Instead the left eigenvectors of the DAE model obtained from the
simulation program EUROSTAG (see Fig. 2.1) are computed numerically
in Matlab. As the angles are small and the bus voltages deviate very little
from one, the real current eigenvector elements immediately yield active
power controllability. Fig. 3.2 shows the complex eigenvector elements
representing ∆iR at all nine buses for both the 1.3 and the 1.8 Hz modes.
The same information for the load buses is given numerically in Table 3.1.


Bus 1.3 Hz mode 1.8 Hz mode


N5 0.269e-j83° 0.098ej34°


N6 0.228e-j83° 0.297ej28°


N8 0.593e-j86° 0.282ej29°


Table 3.1 Active power controllability at the load buses obtained as the left DAE
eigenvector elements representing real current injection.
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Fig. 3.2 Complex eigenvector elements representing real current injection at all nine
network buses for the 1.3 Hz mode (left) and the 1.8 Hz mode (right).
Dashed line shows mean argument of rotor angular velocity elements.


In (2.18) active power enters the equation for (time derivative of) the rotor
angular velocity. In the left eigenvectors, active power injection is therefore
expected to have arguments that are similar to those of the rotor angular
velocity elements. An angle reference is therefore obtained by fitting a
straight line to the ∆ω elements of the left eigenvectors. While the dashed
line in Fig. 3.2 indicates the angle reference, the ∆ω elements themselves
are not shown. If the eigenvector elements are close to the dashed line, a
projection on to the line describes the situation well. In this case the
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controllability information of the ∆iR elements is reduced into signed real
numbers.


A bending mode of a flexible mechanical structure is conveniently
visualized as a snapshot of the motion when the coordinates take one of
their extreme values. This is used to illustrate the pendulum in Fig. 2.12
and other examples can be found in textbooks (see for example p. 199 in
[Timoshenko 1937]). The same technique can be employed to visualize
mode controllability in a power system. Let the mode controllability at
each bus be represented by a vertical bar. The bars point upward or
downward depending on the sign of the controllability and have heights
proportional to the magnitude. Place the bars on a 3D view of the network
topology as in Fig. 3.3. The dashed lines connecting the bars are added for
improved readability. The line sections where the controllability changes
sign and thus passes through zero are easily identified. Furthermore,
regions are formed within which the controllability has the same sign.
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Fig. 3.3 Active power controllability at all network buses for the 1.3 Hz mode (left)
and the 1.8 Hz mode (right).


The visual impression of a 3D graph is improved considerably by using
color computer graphics and by interactively manipulating the orientation
of the graphical object.


As predicted by the mechanical model, the controllability is highest close
to the smaller machines that are active in the mode: S2 and S3 for the 1.3
Hz mode and S3 for the 1.8 Hz mode.


The controllability is zero close to the very large machine H1 for both
modes. For the slow mode, H1 swings against the other two, while for the
faster mode it is more like a fixed reference bus. When the two smaller
machines swing against each other in the faster mode, a point of zero
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controllability also occurs close to S2, which is considerably larger than
S3.


As mentioned, the points of zero controllability are located where the mass-
scaled electric distances to the machines swinging in each direction are
equal. While being fairly simple to determine this quantity for a two
machine system, it is very complicated for a multi-machine power system
with a meshed network. The controllability information obtained from the
DAE eigenvectors is more general than the mass-scaled electric distance.
As it can include the actual voltage profile and the true angle differences it
is more valid. In combination with the visualization technique used in Fig.
3.3 it provides a valuable tool for understanding of the variation of the
mode controllability in the network.


Twenty-three Machine System


The controller design for the twenty-three machine system focuses on the
damping of three selected electro-mechanical modes. As for the three
machine system, eigenvectors are computed numerically using the linear
DAE model exported from EUROSTAG. The large angular separation at
the operating point of the fault case, however requires (3.4) to be used. The
resulting active power controllability at the load buses is given in Table 3.2
and the distribution in the complex plane of the values for all network
buses is shown in Fig. 3.4. Again a line (dashed) is determined from the
rotor angular velocity elements of the eigenvectors. As the points lie fairly
close to the line a projection onto the line describes the situation well.
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Fig. 3.4 Distribution of active power controllability at all network buses in the
complex plane. Dashed line shows mean argument of rotor angular velocity
elements.
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Bus Mode 1 Mode 2 Mode 3


N1011 0.263e-j69° 0.007e-j67° 0.004e-j130°


N1012 0.285e-j68° 0.008e-j71° 0.006e-j171°


N1013 0.303e-j68° 0.009e-j70° 0.006e-j165°


N1022 0.161e-j68° 0.017ej96° 0.045e-j42°


N1041 0.132ej100° 0.080e-j65° 0.021e-j54°


N1042 0.229ej104° 0.114e-j52° 0.171e-j42°


N1043 0.141ej103° 0.062e-j60° 0.045e-j47°


N1044 0.109ej106° 0.020e-j28° 0.079e-j43°


N1045 0.247ej100° 0.140e-j64° 0.026e-j45°


N2031 0.014e-j44° 0.035ej96° 0.081e-j41°


N2032 0.059e-j58° 0.058ej99° 0.123e-j39°


N4071 0.374e-j71° 0.045e-j80° 0.086ej144°


N4072 0.436e-j72° 0.067e-j81° 0.136ej143°


N41 0.109ej106° 0.033ej101° 0.042e-j42°


N42 0.076ej106° 0.015ej31° 0.100e-j42°


N43 0.090ej106° 0.015ej4° 0.092e-j43°


N46 0.089ej106° 0.015ej5° 0.097e-j43°


N47 0.096ej105° 0.021ej32° 0.145e-j42°


N51 0.318ej101° 0.224e-j64° 0.044e-j43°


N61 0.254ej105° 0.101ej116° 0.053ej133°


N62 0.354ej105° 0.162ej118° 0.103ej134°


N63 0.381ej106° 0.228ej119° 0.142ej135°


Table 3.2 Active power controllability at the load buses.


The geographical variation of the active power controllability throughout
the network is visualized in Fig 3.5 using the same method as above. The
bus names have been removed to improve readability, but are found in Fig.
2.8.


The controllability is high for all three modes in the southeastern part and
in the areas Southwest and External. The northern part of the system
exhibits high controllability for Mode 1, while in the mid eastern part it is
high only for Mode 3. With the exception of A4051 in Mode 3, the
controllability at the machine buses agrees well with the swing pattern of
the machines shown in Fig. 2.9.
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Fig. 3.5 Active power controllability at all network buses for Mode 1,2 and 3.
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4
Feedback Signals


… in which three feedback  signals are selected for control of active power
and it is shown that the geographical variation of phase angle mode
observability agrees with that of active power mode controllability.


Feedback signals carry information while control signals carry energy. As
information is so much simpler to handle than energy, the freedom to
choose feedback signals for a damping system is in general considerable: a
variable that is not physically measurable may be estimated or synthesized
from one or more other available quantities. A variable that cannot be
conveniently measured at the desirable location can be remotely measured
and telemetered via some sort of communication link.


Three signals are proposed for control of active power:


• local bus frequency;
• frequency of the closest machine;
• estimated mode frequency.


The two first signals will be used in several dampers at different network
locations in Chapters 7 and 8, while the third one will only be used for
damping of a local mode with one damper as described in Chapters 5 and
6. All three signals have been used for damping with PSS (see paper and
discussion of [Larsen and Swann 1981]). To a certain extent they describe
the velocity of the machine rotors, which is natural, as it is their motion
that should be damped.


General requirements on feedback signals for damping are discussed in
Section 4.1, and expressions for their mode observability are given in
Section 4.2. The geographical variation of mode observability for bus
frequency is computed for the test systems in Section 4.3. It is analytically
shown that for each mode the optimum place to measure bus frequency at
is where active power has the best effect on damping. This makes local
feedback preferable, which is advantageous in many aspects. The meaning
of the closest machine is outlined in Section 4.4 while estimated mode
frequency is treated in Section 4.5. Section 4.6 concludes the results.
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4.1 Feedback Signal Selection


A feedback signal for control of a certain actuator to damp a power system
should fulfil a number of requirements:


• realistic sensor and signal processing needs;
• limited demands on communication bandwidth and delay;
• adequate phase and amplitude of the mode observability;
• characteristics insensitive to change of operating point or network


topology.


Whereas the first three issues are fairly straightforward to check, the last
one is difficult but very important. In general, a damping system is aimed
at a set of modes that may have different phase characteristics. The fact that
the frequencies of these modes may lie very close to each other, and can
shift as the operating point or the network state changes makes the design
of a suitable phase compensation network difficult. Insensitivity to this
change in system parameters is often referred to as robustness.


Design of robust controllers typically requires extensive numerical
investigations. These may use repeated linearization [Jones 1996] of an
ordinary model, or methods that can handle uncertainty such as H∞ or µ
design techniques [Maciejowski 1989]. Instead of using these numerical
alternatives the control laws suggested in the following will be based on
structural knowledge about the physical behaviour of the system. This
method is less straightforward, but yields a controller whose robustness is
related to the validity of a physical law rather than to numerical properties
of the system. The required structural knowledge is obtained from the
mechanical equivalents of Section 2.4. These are well prepared as their
force input correspond to controlled active power input, which is the type
of actuator chosen in Chapter 3.


4.2 Computing Mode Observability


To evaluate a feedback signal, its ability to detect a certain mode is of
primary interest. As a mode has a geographical extent and the measurement
of the signal can be done at different places, the geographical variation of
mode observability should be studied. From this the suitability of the signal
and an appropriate location to measure it can be concluded.


Mode observability is closely related to the right eigenvectors of a system.
This gives the same restrictions on valid comparisons that applied to mode
controllability: Only the mode controllability of variables that describe the
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same physical quantity and have the same scaling can be compared.
Measures for different modes can not be compared to each other.


A right eigenvector and its eigenvalue contain all information about how
all the elements of the state vector move during a mode motion. As stated
by (2.9), the eigenvalue gives the frequency and damping, while the
eigenvector elements determine the amplitude and phase shift of the more
or less damped sinusoidal motion of each state. In a DAE model both
dynamic states, algebraic variables and outputs are feedback signal
candidates. Fig. 2.3 indicates that the expressions for their mode
observability are different. The mode motion of the dynamic states xd are
given directly by the right eigenvectors. These are found as columns in the
right modal matrix of the ODE system,


Φ


or equivalently by the dynamic part of the right DAE system eigenvectors
obtained from (2.12),


Φdae,d


The influence of the mode motion on the algebraic states xa in a DAE
model is,


−A 22
−1A 21Φ (4.1)


while the coupling from mode to explicit outputs is governed by,


C1 − C2A 22
−1A 21( )Φ (4.2)


where the parenthesized expression is equal to Code. The output matrices
C 1 and C2 may be formed for the observability analysis instead of
including the outputs in the model. This procedure limits the model
complexity, while still offering the requested information. As an example,
phase angle at a network bus does not appear as a variable in the DAE
model exported by the simulation program EUROSTAG. Instead it can be
determined from the bus voltage elements as,


∆θ = 1


V 2 −v I v R[ ] ∆v R
∆v I










(4.3)


where V is bus voltage magnitude, vR+jvI is the linearization point and ∆
denotes deviation from it.
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4.3 Local Bus Frequency


The generic damping component in a spring-mass model is a viscous
damper. When moving one of its ends relative to the other, the damper
develops a counteracting force proportional to the velocity of the motion.
Introducing a damper as in Fig. 4.1, would intuitively damp an oscillating
motion of the masses as the swing energy is dissipated in the damper.


M1


d


k1 k2


x1
x3


M2


x2


F1 F2


Fig. 4.1 Viscous damper introduced in the spring-mass model of an inter-area mode.


The arrangement gives a force F3 that is d3 times the velocity of its point of
attack. In a power system this is equivalent to active power proportional to
the local bus frequency deviation. This control law has been proposed for
damping controllers in HVDC links by for example [Smed 1993]. A
difference here is that it will be employed simultaneously at different
locations in the network.


Bus frequency is obtained by filtering measurements of the phase angle.
Taking the time derivative of a sinusoidal signal gives a phase shift of 90°
and adds a factor equal to the angular velocity. The mode observability for
the bus frequency thus differs from that of the phase angle by a factor equal
to j times the eigenfrequency of the mode, which is the imaginary part of
the corresponding eigenvalue. For more details on techniques to determine
bus frequency, see [Phadke et al 1983].


Mode Observability for Analytical Models


The mode observability of x3 in the spring-mass model (2.29) of an inter-
area mode can be obtained from the right eigenvector in (2.31) by using
(4.1),
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−A 22
−1A 21Φ1 = 1


k 1 + k 2
0 0 k 1 k 2[ ] λ1


M1


−λ1


M 2


1
M1


−1
M 2
















T


=


k 1


M1
− k 2


M 2


k 1 + k 2


(4.4)


Clearly, the observability is large close to the masses, and zero at a point
between them, which could be called a swing node. The mode observability
in x3 and the mode controllability of the force F3 as given by (3.5) thus
exhibit exactly the same dependence on k1 and k2.


The mode observability of x2 in the pendulum in Fig. 2.12 is,


−A 22
−1A 21Φ1 = l 2


l1 + l 2


Performing the same computations for the spring-mass model of (2.33) and
the power system of (2.20) yield the following expressions for the mode
observability of x2


k1


k1 + k2


and of θ ,


−Kθθ
−1Kθδ = −Kδθ


T Kθθ
−1


For all three systems, the mode observability of the phase angle or its
equivalent increases as the measurement point is moved closer to the
swinging mass. The geographical variation of this mode observability is
thus the same as that of the mode controllability measures of active power
or force derived in Section 3.3. This property constitutes the type of highly
desirable structural information mentioned in Section 4.1. It can be proven
that the agreement applies for a multi-machine power system with a
general network.


Depart from the description of (2.22) and omit the ∆ notations. Eliminating
θ gives the ODE formulation of the system,


ẋ = Ax + Bu
y = Cx + Du{


with
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x = ω
δ








;  u = Pload ;  y = θ ;  


A = 0 M −1K
I 0








;      B = M −1K δθK θθ


−1


0






;


C = 0 −K θθ
−1K θδ[ ];D = K θθ


−1[ ]
where


K = Kδδ − KδθKθθ
−1Kθδ


Due to the total lack of damping, the eigenvalues of this system are purely
imaginary. Use the state transformation as in the proof of eigenvector
similarity in [Eliasson 1990],


x̃ = M̃1/2x = M1/2 0
0 M1/2








x;


This yields the new system matrices,


Ã = 0 M−1/2KM −1/2


I 0






;    B̃ = M−1/2KδθKθθ


−1


0






;


C̃ = 0 −Kθθ
−1Kθδ M−1/2[ ];D = Kθθ


−1[ ]
Partition the right and left eigenvectors Φi and Ψi of the eigenvalue λi into
angular velocity and angle parts,


Φi = Φiω
Φiδ








;  Ψi = Ψiω Ψiδ[ ]


Entering this into (2.7) gives,


Φiω = λ iΦiδ


0 = M−1/2KM −1/2 + λ i
2I( )Φiδ


(4.5)


Assume that Φiδ is real. This is possible since the parenthesized expression
is real. Similar expressions for the left eigenvectors are based on (2.8),


Ψiδ = λ i Ψiω


0 = Ψiω M −1/2KM −1/2 + λ i
2I( ) (4.6)
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As all matrices within the parenthesis of (4.5) and (4.6) are symmetric it
can be concluded that,


Ψiω = ρiξiΦiδ
T (4.7)


where ρi is a positive real scalar and ξi is a complex scalar that are chosen
so that Ψ iΦi=1 for all nonzero eigenvalues. Here it is sufficient to
determine ξi so that the argument of ΨiΦi is zero. Using (4.5)-(4.7) gives,


Ψiω Ψiδ[ ] Φiω
Φiδ










= Ψiω λ iΨiω[ ] λ iΦiδ
Φiδ










= ρiξi Φiδ
T λ iΦiδ


T[ ] λ iΦiδ
Φiδ










= 2ρiξiλ iΦiδ
T Φiδ


It is evident that ξi should have the same argument as the inverse of λi and
therefore ξi = λ i


−1 will be used in the following. Both left and right
eigenvectors can now be expressed in terms of Φiδ, λi and ρi.


The observability of mode i in the phase angles θ at the load buses is then
given by,


C̃Φi = −Kθθ
−1Kθδ M−1/2Φiδ


Similarly the active power controllability of mode i at the load buses is ,


ΨiB̃ = ΨiωM−1/2KδθKθθ
−1 = λ i


−1ρiΦiδ
T M−1/2KδθKθθ


−1


Taking the transpose of this and using (4.7) together with the properties of
Kθθ, Kδθ and Kθδ yields,


ΨiB̃( )T
= ρiλ i


−1Kθθ
−1Kθδ M−1/2Φiδ = −ρiλ i


−1C̃Φi (4.8)


For each mode and at all load buses the mode controllability of active
power and the mode observability of the phase angle are thus proved to be
proportional. This property does not depend on the choice of coordinates,
and therefore applies also to the original coordinates. It is however
important to realize that the result is only guaranteed to apply as long as the
used model is valid.


For each mode, the measurement signal best reflecting the mode is thus
available where the actuator is most efficient. The resulting feedback is
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therefore local and eliminates long distance communication with its
associated problems.


Let active power injection at a bus be controlled as a gain K times the local
bus frequency obtained as the time derivative of the phase angle. Taking
the time derivative of a sinusoidal signal adds a phase shift of 90° and
multiplies the signal by its angular frequency. For mode i the resulting
control law at bus k is,


Pk = Kλ iθk


The eigenvalue sensitivity to K is obtained by inserting (4.8) into (2.11)
and including λi of the controller,


∂λ i


∂K
= ψ iB̃λ iC̃Φi = −ρi C̃Φi( )T


C̃Φi (4.9)


Since ρi is real and positive, the sensitivity of (4.9) is real and negative. At
least for small gains, active power controlled by local bus frequency will
therefore add damping to all modes simultaneously – irrespective of where
in the system such a damper is installed.


The same agreement between the magnitude of mode controllability and
mode observability but for reactive power and voltage magnitude is
mentioned in [Smed and Andersson 1993]. Implicitly it forms the basis for
the SVC control law in [Gronquist et al 1995], where the SVC output is
controlled in proportion to the time derivative of the local bus voltage
magnitude. By the use of energy function analysis it is shown that this local
feedback improves damping regardless of where in the system the
equipment is located. The close relationship to the control law suggested
above is apparent. By inserting this in the energy function used in
[Gronquist et al 1995], the same beneficial effect on damping can probably
be shown to apply for active power controlled by local bus frequency. If
this is the case the controlled active power need not vary symmetrically
around zero, but can be limited for example to zero from above or below.
Such a proof, which is carried out for a local mode system in Chapter 5,
would verify the assumption in Section 3.1, that temporary disconnection
of a load can be used to improve damping.


Mode Observability for Numerical Models


The analytical results above are based on highly simplified power system
models. Their validity in a more realistic system is therefore not evident,
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but can be examined by studying the test systems with three and twenty-
three machines respectively.


The three-machine model includes line resistance and generator flux
dynamics. This makes analytical treatment impractical and instead the
phase angle mode observability in the network is determined numerically.
For the load situation in question, the imaginary part of the voltage is small
and the voltage magnitude is very close to one at all buses. This simplifies
(4.3) substantially so that the phase angle mode observability can be
obtained directly from the ∆vI elements of the right eigenvector
corresponding to the electro-mechanical modes. This is quite similar to the
procedure for determining active power controllability for the same system
in Section 3.3. The complex nature of the observability measure is treated
in the same way: by projecting the points in the complex plane on a line
obtained as a least square fit to the points of the machine angle elements.
Fig. 4.2 shows the line and the complex phase angle mode observability of
all network buses. As a complement, the complex values of phase angle
mode observability for the load buses are given in Table 4.1.


Bus 1.3 Hz mode 1.8 Hz mode


N5 0.152e-j170° 0.028ej100°


N6 0.130e-j169° 0.095ej76°


N8 0.332e-j175° 0.086ej83°


Table 4.1 Complex phase angle mode observability at the load buses of the three
machine system.
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Fig. 4.2 Complex phase angle mode observability of the three machine system for
the 1.3 Hz mode (left) and the 1.8 Hz mode (right) as compared to the line
based on machine angle mode observability.
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As the deviation from the line is small in both cases, substantial
information is not lost through the projection. The geographical variation in
the network of mode observability can now be illustrated using the same
technique as in Fig. 3.3. Thinking in terms of bending modes of flexible
mechanical structures is even more motivated here, as observability and
mode shape both are extracted from the right eigenvectors. The result in
Fig. 4.3 shows great agreement with the active power mode controllability
in Fig. 3.3 and the interpretations are the same.
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Fig. 4.3 Phase angle mode observability of the three machine system for the 1.3 Hz
mode (left) and the 1.8 Hz mode (right).


The twenty-three machine system model is even less simplified than that
with three machines. Important differences are damper windings, nonlinear
loads and PSSs. The phase angle mode observability is obtained in much
the same way as for the three machine system. Due to the high loading
situation however, (4.3) needs to be employed and the resulting complex
values for the load buses are given in Table 4.2. These numbers are
distributed in the complex plane as in Fig. 4.4 for the selected modes in the
fault case.
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Bus Mode 1 Mode 2 Mode 3


N1011 0.027ej144° 0.006ej170° 0.002ej72°


N1012 0.029ej145° 0.008ej167° 0.003e-j6°


N1013 0.032ej148° 0.009ej167° 0.005e-j8°


N1022 0.015ej132° 0.017e-j27° 0.036ej137°


N1041 0.127e-j5° 0.071ej166° 0.036ej127°


N1042 0.101e-j5° 0.016e-j171° 0.176ej139°


N1043 0.097e-j4° 0.022ej175° 0.082ej138°


N1044 0.058e-j1° 0.034e-j27° 0.125ej141°


N1045 0.165e-j6° 0.146ej164° 0.050e-j21°


N2031 0.016ej19° 0.040e-j24° 0.079ej140°


N2032 0.005ej85° 0.054e-j24° 0.093ej138°


N4071 0.038ej144° 0.042ej158° 0.057e-j41°


N4072 0.044ej144° 0.063ej158° 0.091e-j42°


N41 0.053ej0° 0.040e-j24° 0.076ej143°


N42 0.041e-j1° 0.050e-j24° 0.137ej141°


N43 0.048ej0° 0.052e-j24° 0.151ej141°


N46 0.048ej0° 0.057e-j24° 0.165ej141°


N47 0.043ej0° 0.068e-j23° 0.186ej141°


N51 0.190e-j6° 0.223ej163° 0.099e-j25°


N61 0.113e-j5° 0.037e-j24° 0.019e-j65°


N62 0.135e-j6° 0.038e-j24° 0.059e-j50°


N63 0.143e-j6° 0.062e-j21° 0.083e-j50°


Table 4.2 Complex phase angle mode observability at the load buses of the twenty-
three machine system.







70 4. Feedback Signals


Im
ag


Real


Mode 1


Im
ag


Real


Mode 2


Im
ag


Real


Mode 3


Fig. 4.4 Complex phase angle mode observability of the twenty-three machine
system in the fault case for Mode 1 (left), Mode 2 (middle) and Mode 3
(right) as compared to the lines based on machine angle mode observability.


Again, the points are projected onto a line with a direction equal to the
mean direction of the machine angle observability of all generators. The
geographical variation can finally be visualized along with the network
topology as in Fig. 4.5 for the three modes.
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Fig. 4.5 Phase angle mode observability of the twenty-three machine system in the
fault case for Mode 1 (top), Mode 2 (middle) and Mode 3 (bottom).
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Fig. 4.5 is very similar to the geographical variation of the active power
controllability in Fig. 3.5, and differences can be found mainly in
magnitude. More importantly, the sign is different at the buses close to
N4051 for Mode 3 in the fault case. A screening of all modes shows that
this is the only significant exception from the rule that the geographical
variation of active power mode controllability and phase angle mode
observability are, if not identical, then at least very similar.


If local feedback from bus frequency to active power is introduced in the
area close to bus N4051, the eigenvalue sensitivity of Mode 3 to the gain
will differ from that predicted by (4.9) by 180°. Increasing the gain from
zero to a small value will thus start to move the eigenvalues of Mode 3 to
the right. As with all sensitivity analysis, nothing can be said about the
continued locus of the eigenvalues. This is better treated with root locus
analysis, which will be applied in Chapter 7.


4.4 Closest Machine Frequency


The damping system should damp the motions of the oscillating masses.
Measuring their velocity is then an obvious and more direct alternative to
measuring velocity at the actuator location. On the other hand these signals,
corresponding to rotor angular velocity of power system generators, need
to be telemetered. In a large power system measurements would have to be
sent from all machines to all actuators. To keep down communication
requirements, this is reduced to using only the rotor angular velocity or
frequency of the closest machine. The same choice is suggested in [Stanton
and Dykas 1989] and [Larsen and Hill 1993].


In the previous section it was shown that active power controlled by the
bus frequency anywhere in the system shifts all eigenvalues straight into
the left half plane as long as the gain is small. It seems reasonable to
assume that this property applies also if the measurement point is not
exactly the same as the actuator location, but sufficiently close to it. As
shown in Section 3.3 "close" is related to the mass-scaled electrical
distance rather than the geographical distance. For the spring-mass model
damping is obtained as long as the measurement point and the actuator
location are on the same side of the swing node. In a larger system the
same condition is expressed in terms of acceptable regions for the different
modes. If the mode controllability can be visualized by the 3D-views used
in Figs 3.3 and 3.5 these may be used define the regions. For an actuator
located in a region, feedback from the rotor angular velocity of any
machine in that region will damp the corresponding mode. As the regions
are different for different modes, the machine that lies in the same region as
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the actuator for all modes is accepted. Practically, it may be sufficient if
this is true only for the modes where the controllability of the actuator at
the given location is considerable.


Although being illustrative, the described method is not very exact. An
alternative is to numerically compute the eigenvalue sensitivity for
different combinations of machines and actuator locations. According to
(2.11) and (2.16) this is the product of active power mode controllability
and machine frequency mode observability. The complex values of active
power mode controllability at the load buses are given in Tables 3.1 and
3.2 for the two multi-machine test systems. The machine frequency mode
observability is obtained from the angular velocity elements of the right
DAE or ODE eigenvectors. The values for the three machine system are
given below in Table 4.3.


Machine 1.3 Hz mode 1.8 Hz mode


H1 2.230ej89° 0.330e-j16°


S2 6.583e-j88° 3.250e-j32°


S3 3.978e-j87° 10.91ej156°


Table 4.3 Complex mode observability for the angular velocity of the machines in the
three machine system.


Table 4.4 contains the corresponding complex numbers for all the
machines in the twenty-three machine system.
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Machine Mode 1 Mode 2 Mode 3


A1042 0.414ej80° 0.051e-j72° 1.609e-j132°


A1043 0.363ej78° 0.026e-j115° 0.801e-j132°


A4042 0.114ej74° 0.441ej67° 1.146e-j132°


A4047_1 0.136ej74° 0.618ej67° 1.676e-j131°


A4047_2 0.136ej74° 0.618ej67° 1.676e-j131°


A4051_1 0.832ej81° 1.765e-j110° 0.901ej62°


A4051_2 0.850ej80° 1.836e-j112° 0.926ej60°


A4062 0.565ej81° 0.408ej71° 0.527ej38°


A4063_1 0.621ej81° 0.668ej71° 0.821ej38°


A4063_2 0.621ej81° 0.668ej71° 0.821ej38°


B4011 0.113e-j118° 0.047e-j98° 0.029ej120°


B4012 0.121e-j118° 0.060e-j102° 0.047ej85°


B4021 0.004e-j64° 0.216ej65° 0.500e-j134°


B4031 0.025ej62° 0.256ej66° 0.487e-j133°


B4071 0.161e-j124° 0.292e-j113° 0.425ej48°


B4072 0.187e-j126° 0.445e-j114° 0.681ej47°


B1012 0.125e-j119° 0.059e-j102° 0.044ej80°


B1013 0.135e-j119° 0.065e-j103° 0.052ej81°


B1014 0.141e-j118° 0.072e-j105° 0.070ej76°


B1021 0.140e-j108° 0.151ej60° 0.274e-j146°


B1022 0.083e-j113° 0.100ej63° 0.202e-j137°


B2032 0.027e-j82° 0.373ej65° 0.651e-j135°


C4041 0.219ej90° 0.301ej64° 0.594e-j130°


Table 4.4 Complex mode observability for the angular velocity of the machines in the
twenty-three machine system.


Depending on which location that is chosen for the actuator, suitable
machines are chosen and the corresponding controllability and
observability are multiplied to give eigenvalue sensitivity.


4.5 Estimated Mode Frequency


The ultimate feedback signal for damping a mode would be the mode
coordinate itself. In principle this involves all the machine angles weighted
by the right eigenvector of the mode, which in most cases is unrealistic.
The (inter-area) mode involving two areas, however is structurally simple







4.5 Estimated Mode Frequency 75


as each machine group can be represented as a large machine with a
representative machine angle as in Fig. 4.6.


E1∠δ 1 V∠ 0


Area 1


E2∠δ 2


Area 2


P1+jQ1 P2+jQ2


i1 i2


1 0 2


Fig. 4.6 Two area system.


The angles δ1 and δ2 are the mass weighted means of the individual
machine angles in the two groups. The angle δ=δ1-δ2 closely reflects the
inter-area mode. If the two areas are connected via a set of transmission
lines, δ may be synthesized from local measurements at the intermediate
bus as in [Larsen et al 1995] and [Lerch et al 1991]: introduce the complex
variables i1,  i2,  E1,  E2 and V  for the corresponding currents and voltages
in Fig. 4.6. The voltage at the fictitious internal bus 1 is then expressed as,


E1 = V + Z1i1


where Z1 is the impedance between bus 0 and bus 1. Keeping in mind that
V =V  is real, the angle δ1 is obtained as,


δ1 = tan−1 Im Z1i1( )
V + Re Z1i1( )












In [Lerch et al 1991] the term V has been omitted, probably by mistake. If
desired, the current measurement can be replaced by measured active and
reactive power,


i1 = P1 + jQ1


V


If furthermore the resistive part of the impedance is negligible so that
Z1=jX1, a more convenient expression is obtained,


δ1 = tan−1 P1


V 2 / X1 + Q1










(4.10)


δ2 is obtained from the same expressions by using subscript 2 instead of 1,
and the angle difference δ=δ1-δ2 is computed. The angular frequency of the
mode is finally obtained by lead filtering δ.
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In [Larsen et al 1995] a CSC damper in a two-area system uses the
estimated mode frequency as feedback signal. It is shown that for properly
selected Z1 and Z2  very large damping can be achieved, which means that
the feedback signal comes close to the mode coordinate itself. This is
remarkable for an estimate based on local measurements. [Larsen et al
1995] further reports that substantial damping can be obtained also for
other impedance values, which indicates a certain robustness of the
feedback signal.


Except for the work in [Larsen et al 1995] and of [Lerch et al 1991] based
on typical two-area systems, the concept of estimating the frequency at an
adjacent bus has also been successfully applied to PSS [Kundur 1994,
p. 1130]. This case corresponds to the above estimation of δ1 only. The
same technique can also be employed in larger systems, but little can be
said about the generic behaviour. While efficient in some cases, it cannot
capture mode behaviour in a general system with arbitrary structure of
network and modes. In this work estimated mode frequency will therefore
only be considered for application in the single mode system used in
Chapters 5 and 6.


4.6 Conclusions


The mode observability of bus frequency (or phase angle) is shown to be
closely related to the mode controllability of active power. For the simple
electro-mechanical power system model full agreement is demonstrated in
the geographical variations of these quantities. A direct consequence is that
local feedback is preferable since the best place to measure bus frequency
is at the bus with highest active power mode controllability. It is also
shown that increasing the gain of such a damper from zero will move the
eigenvalues of all modes towards better damping. The validity of these
results are formally restricted to zero gain. They have, on the other hand,
the attractive feature of not being limited to a certain topology or operating
point. This is verified by the similarities between the 3D-graphs of bus
frequency mode observability in Chapter 3 and active power mode
controllability in this chapter. The agreement is, however, not complete
which indicates that the model used for the proof is not an entirely valid
simplification of the twenty-three machine system at high load.
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5
On-off Control of a Damper


… in which energy functions and phase plane plots replace modal analysis
as general tools for damping assessment and controller design.


In order to study the practical problems of load control damping, a field
test was planned. The scope was limited to damping of a local mode, which
is a suitable first step as it involves only a single machine. Provided that the
control signal magnitude is appropriate, on-off control can be applied to
damping of electro-mechanical oscillations. It requires less sophisticated
power electronics than continuous control and is therefore used in the field
test. The natural feedback signal is the rotor angular velocity of the
machine, but it is difficult to measure. Instead estimated mode frequency as
described in Section 4.5 is chosen for the experiment. In a single machine
infinite bus system this signal is an estimate of the machine frequency. The
analysis in this chapter assumes perfect agreement between estimate and
machine frequency so that the latter can be considered available as
feedback signal.


Because of its nonlinear nature, on-off or relay control requires other
methods than those presented in the previous chapters. The necessary
analysis tools are presented in this chapter, which thus lays the theoretical
foundation for the field test.


Section 5.1 introduces an energy function, that can quantify damping
caused by any control action. The efficiency of damper windings and of a
relay controlled active load are shown for a single machine-infinite bus
system. Phase plane plots are used in Section 5.2. to describe the behaviour
of the nonlinear system with relay feedback. At a laboratory test the
controller enters a limit cycle. The condition for a limit cycle-free
equilibrium is determined. At the field test it became apparent that the
procedure for relay parameter selection resulting from the previous analysis
was not practically useful. Section 5.3 presents a more realistic procedure
that was later designed.
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5.1 Energy Function Analysis


The influence of damping can be demonstrated by the use of energy
functions or Lyapunov functions that quantify the swing energy of the
system. A proper energy function can give a qualitative answer to
questions such as: is the system stable at this operating point? By
formulating the energy function for a marginally stable system, it can help
to determine if a certain control action will stabilize the system. Energy
function analysis can handle both nonlinear control laws and nonlinear
power system models and finds its use mainly in transient stability analysis
or large disturbance stability analysis. Linear analysis is restricted to small
disturbance stability analysis, but when it is valid it provides decoupling of
the dynamics into modes. As shown in Chapters 3 and 4, it gives
quantitative information about where to locate sensors and actuators.
Examples of energy functions can be found in [Gronquist et al 1995],
[Hiskens and Hill 1992] and [Stanton and Dykas 1989].


Entering the parameters of the single machine system of Fig. 2.4 with no
load into the energy function in [Stanton and Dykas 1989] gives,


V = H


ωR
δ̇ 2 − Pm δ − δ 0( ) − EV∞


X d
' + X t + X tl


cosδ − cosδ 0( ) (5.1)


δ0 is the machine angle value at the equilibrium. When the system is at rest
V is zero, while an undamped oscillation gives a constant value greater than
zero. A control action that contributes to damping is characterized by its
ability to make V decrease.


The active power consumed by damper windings or a damping controller
can be introduced as Pd  in the single machine model of (2.18),


2H


ωR


˙̇δ = Pm − EV∞
X d


' + X t + X tl
sin δ − Pd (5.2)


where the load bus has been eliminated. Taking the time derivative of (5.1)
and inserting (5.2) yields,


V̇ = δ̇ 2H


ωR


˙̇δ − Pm + EV∞
X d


' + X t + X tl
sin δ













 = −Pdδ̇ (5.3)


Equation (5.3) states that if Pd has the same sign as the velocity deviation
∆ω=ω–ωR, the system will be damped. This verifies that damper windings,
often modelled as Pd=D∆ω, have a positive effect on damping. The
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additional active power γPL drawn from the generator by a load PL, can be
approximately represented by Pd. According to (5.3), switching the load on
and off in phase with the velocity deviation will also improve damping.
This control can be performed by a relay that switches the load at certain
levels of ∆ω, possibly with hysteresis as in Fig. 5.1.


∆ω


∆Pd


∆ωon∆ωoff


PL


Fig. 5.1 Relay characteristics.


Relay controllers have a number of properties, that are different from linear
controllers. The relay uses the entire rating of the actuator at each control
action. This leads to fast damping of small deviations, as the control signal
magnitude depends only on the sign and not on the magnitude of the
deviation. A stable equilibrium point in the linear case requires a suitable
gain to be selected using eigenanalysis. For the relay, the level ∆ωon,
below which no measures are taken, needs to be set. This level is usually
selected using empirical methods and numerous simulation runs. As an
alternative, Section 5.2 shows how a general technique for nonlinear
dynamic systems can be used to analyse the properties of the equilibrium
point and how to select ∆ωon for the single machine system.


5.2 Phase Plane Analysis


A general tool for analysis of data from simulations of second order
nonlinear dynamic systems is the phase plane plot. It shows the trajectory
of one state as function of the other. As relay characteristics can be
included in the phase plane plot, it is the perfect tool for analysis of relay
feedback and will be the basis for all analysis in the following.


Switching the Load On and Off


The relay can turn an active load on and off. Fig. 5.2 shows plots from two
simulations in Simulink [Simulink] of the single machine system. The
generator is considered connected to a two-pole. The load is modelled as an
impedance that is incorporated in the two-pole equivalent leading to two
sets of two-pole parameters depending on if the load is on or off.
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In the first case (solid lines) a load of 20 kW is suddenly added, while in
the other (dashed lines) the load is removed. Note that both simulations
start at steady state and that the added load actually leads to a value δ1 that
is smaller than that without the load δ0.


The lower left and upper right graphs of Fig. 5.2 show machine angle δ in
rad and the velocity deviation ∆ω in rad/s, as functions of time (Note the
different directions of the time axes). Plotting these two quantities against
each other, yields the phase plane plots to the upper left. These plots have
time as an implicit parameter and their direction is clockwise. The energy
function V performs a step as the loading situation is changed. After time
zero, no swing energy is removed from the system, which is then said to be
conservative. The load switching causes ∆ω to peak at 0.034 rad/s.
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Fig. 5.2 From upper left to lower right: phase plane plots, time histories of the states
and energy function for sudden load increase (solid) and decrease (dashed).
The identities of the phase plane plots are determined from the time
histories of the states.


Effect of Damper Windings


As mentioned, damper windings can be added to the undamped system as
Pd=D∆ω . Fig. 5.3 shows a simulation of load increase and decrease with
D=3 p.u./p.u. The energy function now decreases and indicates that the
system is dissipative, as swing energy vanishes.
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Fig. 5.3 From upper left to lower right: phase plane plots, time histories of the states
and energy function for sudden load increase (solid) and decrease (dashed)
for system with damper windings.


Relay Feedback


If the load PL is controlled in accordance with ∆ω it will add damping. The
characteristics of the relay that can perform this action can easily be
included in the phase plane plot: when the relay turns the load on and off, it
selects one of the steady state values δ0 and δ1 as points around which the
system orbits. The load should be turned on at ∆ωon and off at ∆ωoff,
which both can be drawn as horizontal lines. By noting that the direction of
motion in the plot is clockwise, it is realised that the load should be turned
on when passing ∆ωon upwards, and turned off when passing ∆ωoff
downwards.


Assume that there is no time delay and use ∆ωoff=0 and ∆ωon=0.05, which
is larger than 0.034. Starting from the state [∆ω δ]=[0 0.9δ0], Fig. 5.4
shows that ∆ω is damped until its amplitude is less than ∆ωon.
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Fig. 5.4 Relay controlled system with ∆ωon =0.05 rad/s and ∆ωoff=0. Phase plane
plot (left) and energy function (right) with switching actions (wide)
indicated (not to scale).


Pe(t) from the same simulation is shown in Fig. 5.5 and demonstrates the
desired performance of an on-off controlled damper.
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Fig. 5.5 Relay controlled system with ∆ωon =0.05 rad/s and ∆ωoff=0. Electrical
output of generator with switching actions (wide) indicated (not to scale).


Each switching of PL, both on and off,  reduces the amplitude of Pe with
γPL, where γ is the fraction of PL taken from the generator. The factor γ is
determined from (5.4), which indicates that in order to be effective, PL
should be electrically close to the machine,


γ = x


x + x'
(5.4)


The system with relay feedback is nonlinear, which is indicated by the
envelope of Pe: it decreases linearly rather than exponentially as the relay
feedback removes a constant amount of swing energy each swing period. If
the relay is the dominating source of damping, the slope of the Pe envelope
is constant and can be used a measure of damping.
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If ∆ωon is chosen too small, γPL will finally become larger than Pe and
reverse the phase of the oscillation. Fig. 5.6 shows a simulation with
∆ωon=0.01 rad/s. The system settles down after a sequence of switchings,
that are considerably faster than the period of the undamped oscillation.
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Fig. 5.6 Relay controlled system with small ∆ωon and ∆ωoff=0. Phase plane plot


(left) and energy function (right) with switching actions (wide) indicated
(not to scale).


Effect of a Delay


The fast switching caused by a small value of ∆ωon makes the system more
susceptible to time delays introduced by for example low pass filters.
Fig. 5.7 illustrates the influence on the previous case of a 50 ms time
constant inserted before the relay input. While the delay leaves the
behaviour for ∆ωon=0.05 practically unaffected (not shown), the system
here enters a stable limit cycle, leading to unnecessary switchings. This
was experienced in the laboratory testing of the field test equipment. It is
evident that the limit cycle is disadvantageous and should be avoided.
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Fig. 5.7 Relay controlled system with small ∆ωon, ∆ωoff=0 and time delay. Phase
plane plot (left) and energy function (right) with switching actions (wide)
indicated (not to scale).
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5.3 Procedure for Selecting Relay Parameters


The first two simulations in Section 5.2 show that the control action itself
gives rise to a ∆ω. If ∆ωon is set above this value ∆ωon,min (here 0.034
rad/s) fast switching and possibly a limit cycle can be avoided. The limit
value is the magnitude of a step response – the result of a single switching.
While thus being simple to determine in principle, the field test showed
that in practice the velocity deviation ∆ωon,min is too small to be detected.


If the switching is instead repeated with the swing frequency of the system,
the amplitude increases linearly with time as seen in Fig. 5.8.


0 5
−0.5


0


0.5


Time [s]


∆ω


Fig. 5.8 Excitation through load switching without damper windings. Velocity
deviation with switching actions (wide) indicated (not to scale).


This gives larger amplitudes, that are easier to measure. The ∆ωon limit is
now simple to determine as,


∆ωon,min = ∆ωm


2N
(5.5)


where ∆ωm is the oscillation magnitude after N switching periods. It is
assumed that the excitation starts at steady state.


The behaviour of the system changes with the loading situation. For the
simulated system, the difference in ∆ωon,min was 3 %, when changing from
Pm=0 (0.0337 rad/s) to Pm=1 p.u. (0.0348 rad/s). Since ∆ωon  is chosen
with some safety margin to the limit value, this variation should not be a
problem.


∆ωoff can be set to zero or to a small positive value to assure that no
control action occurs at steady state.
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Consequences of Damper Windings


The simulations of Section 5.2 are not influenced by the damping term, as
it is very small close to the equilibrium. When it comes to exciting a larger
oscillation to determine ∆ωon,min more conveniently, the effect of damping
is noticeable as illustrated by Fig. 5.9 where D is 3 p.u./p.u.


0 5 10 15 20
−0.5


0


0.5


Time [s]


∆ω


Fig. 5.9 Excitation through load switching with damper windings giving
D=3 p.u./p.u. Velocity deviation with switching actions (wide) indicated
(not to scale) and fitted exponential (dashed).


Provided the early part of the growing oscillation can be used, the damper
effect can be ignored and (5.5) applies. The tangent of the envelope of ∆ω
at the start of the oscillation then replaces the true slope used when no
damper windings are present.


If the initial part of the oscillation cannot be distinguished, the slope can be
reconstructed from the dashed line in Fig. 5.9. It is a step response of a first
order system with the time constant 2τ, where


τ = 2H / ωr


D / ωr
= 2H


D
(5.6)


The numerator in the first part of (5.6) is the gain from the input (active
power) to the time derivative of ∆ω, while the denominator is the feedback
gain D/ωr. The use of twice the time constant stems from the fact that the
variation of PL is not symmetric around zero. Having determined τ , the
limit value of ∆ωon can be expressed as,


∆ωon,min = ω̂
2τfosc


(5.7)
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where ω̂  is the stationary amplitude of ∆ω and fosc is the oscillation
frequency. τfosc is the number of switching periods in the time τ. This fact
indicates the close relationship between (5.5) and (5.7).


5.4 Conclusions


The use of phase plane plots has proven useful, when studying relay
feedback of the single mode system. The capability of an energy function
to quantify the oscillation magnitude has also been illustrated. The
simulations in this chapter treated temporary connection of an active load
in Section 5.2 and temporary disconnection in Section 5.3. These two
alternatives are equally effective, but if the load can both consume and
generate active power, so that PL can go both positive and negative,
damping will be twice as fast.


The cases demonstrated here show the consequences of time delay and a
too small value of the parameter ∆ωon. As the time to perform a field test is
very limited, it is very valuable to have identified possible problem such as
these in advance.
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6
Field Test


… in which a relay controlled active load damps oscillations of the
generator in a small hydro power station.


A field test at a hydro power plant of Sydkraft AB was arranged to gain
experience of load control damping and the associated signal processing in
a real system. Whereas this chapter focuses on the control aspects, the
signal processing is outlined more in detail in [Akke 1997]. A more
complete collection of measurement results is found in [Akke 1996].


On-off control was chosen as it was thought to be straightforward to
implement and use. The simulations in Chapter 5 give qualitative
understanding of on-off control and the associated problems such as limit
cycles. Chapter 5 also demonstrates how the nonlinear system can be
analyzed and shows how limit cycles can be avoided. Estimated mode
frequency as described in Section 4.5 is used as input to the controller. This
signal is practical since it is based on local measurements of electrical
signals. With appropriate parameters of the estimator, it produces a signal
that closely agrees with the angular velocity of the machine rotor, which
was used in Chapter 5.


The field test situation is extremely different from that in the laboratory.
The time is very limited – in this case to less than three hours – and the
effect of mistakes can be considerably more serious. The control setup was
therefore first tested in the laboratory. This provided experience of
handling the equipment, that proved useful during the experiment.


Section 6.1 summarizes the characteristics of the power system used for the
test. Section 6.2 deals with the signal processing required for the estimation
of the mode frequency. The implementation of the control system is treated
in Section 6.3. After a brief presentation of the simulation model, the
problems associated with obtaining system parameters are discussed in
Section 6.4. Section 6.5 shows the results of the experiments along with
simulations and finally Section 6.6 concludes the results.
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6.1 Power System


When going through the power stations of Sydkraft AB, the hydro power
plant of Fig. 6.1 was identified as suitable for damping experiments in
several reasons. As the rating of the controlled load should be in reasonable
proportion to that of the generator, the machine rating of only 0.9 MW is
attractive. Improved damping is better perceived if the inherent damping of
the system is low. The lack of damper windings and the fact that the
machines can be weakly connected to a strong network indicate that low
damping can be arranged.


Fig. 6.1 Interior view of the power station with four generating units from 1906.


G1
D1


G2
D2


G3
D3


G4
D4


D5
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20 kV
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Fig. 6.2 One-line diagram of the test system during normal operation Note that the
transformer T3 is not loaded as the disconnector D7 is open.


Fig. 6.2 shows the normal network state of the system that includes two
distribution areas. The generators and one distribution area (Load 1) are
connected to a 50 kV system via a three winding transformer. The other
distribution area (Load 2) is fed from a 20 kV system. The transformer T3
between the two load areas is not loaded.
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By opening disconnector D5 and closing D7, Load 1 can be fed from the
20 kV system via transformer T3. This power system configuration is used
during the damping experiments. Synchronizing a generator to this network
practically results in a single machine infinite bus system, as seen in Fig.
6.3. Its key parameters are given in Appendix A.
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Fig. 6.3 Simplified one-line diagram of the test system during the experiment.


The rating of T3 is small, which permits only one unit of the power plant to
be in operation. The fairly large inertia and low rating of the generating
unit together with its weak connection to the strong 20 kV system, are
prerequisites for low electro-mechanical mode damping.


In the end of September 1996, when the experiment took place,  Load 1
exceeded the rating of the transformer T3. Furthermore D5 must be opened
before D7 is closed, which causes inconvenience for customers in
distribution area 1. Taking this together, the described network state could
not be arranged for more than a few hours at one occasion. The limited
access to the test system prevented all parameter identification tests, except
a load rejection test, from being performed in advance.


6.2 Signal Processing


The signal processing can be divided into three stages: Starting out from
single-phase measurements of voltage and currents, active and reactive
power is first computed. Next the mode angle is computed and filtered to
yield mode frequency. This is finally used for the switching decisions of
the relay, that controls the load via thyristor switches. In this section, mode
frequency estimation based on active and reactive power is described
followed by the procedure for obtaining these signals from the
measurements. More details can be found in [Akke 1997].


Mode Frequency Estimation


The mode angle estimation described in Section 4.5, has been applied to
the single machine infinite bus system. The bus voltage u in Fig. 6.3 is
measured and has the phase angle θ. By using (4.10), δ-θ can be estimated
from Pgen, Qgen and u, and similarly θ can be determined from Pline, Qline
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and u. Adding δ-θ and θ now simply gives the machine angle δ relative to
the infinite bus. The deviation in rotor angular velocity from the nominal
value ∆ω is finally obtained by taking the time derivative of δ. As seen in
Fig. 6.4, ∆ω is sent through a smoothing filter before being used by the
relay controller.


δ
Lead ∆ωLag
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Qgen
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Qline
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δ−θ


θ
+u
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Fig. 6.4 Signal path from active and reactive power to estimate of ∆ω .


X1 and X2 are the only parameters of the estimators. They are set to the
reactances seen from the bus where u is measured to the internal bus of the
generator (xq) and to the infinite bus respectively. In the case of X2 this is a
simplification as line resistance has been skipped. Furthermore Loads 1 and
2 are ignored, which is valid if they can be considered constant. This will
cause an offset in the θ estimate, but will not affect the ∆ω estimate. An
alternative is to assume that the loads behave as impedances and merge
them into the impedance symbolized by X2. The former choice is however
preferred as it is simpler.


If X1 and X2 are not matched to each other, switching of the load gives rise
to step changes in δ and consequently spikes in ∆ω. While a too large X1
has no effect, a too small X1 will cause spurious relay switchings. The
presence and magnitude of spikes is thus a simple measure of how well the
relative values of X1 and X2 are chosen. Their absolute values can not be
checked in a similar way.


Filtering


The estimator treated above is based on active and reactive power, even if
it could use voltage and currents directly. The choice is motivated by the
important fact that the computed values of active and reactive power can be
checked against panel meters in the control room. This gives a verification
that the measurements are correct both regarding phase and magnitude.


The block diagram for how active and reactive power are computed is
given in Fig. 6.5. Note that load current is measured instead of line current
as it simplifies the measurement setup. For the same reason the generator
bus voltage replaces the voltage at the bus between T1 and T2. These
voltages are practically equal as the reactance of transformer T1 is small.







6.2 Signal Processing 91


i r,load


ir,gen


ur,gen


FIR sine


FIR cosine
iα,gen


iβ,gen
FIR
LPF


Pgen


Qgen


Pline


Qline


FIR sine


FIR cosine
uα,gen


uβ,gen
FIR
LPF


FIR sine


FIR cosine
iα,load


iβ,load
FIR
LPFD


A


u


Fig. 6.5 Signal paths from sensors to active and reactive power.


As symmetric conditions are assumed, only single-phase measurements are
used of stator current, stator phase voltage and load current respectively.
The sensor signals are sampled at 1 kHz and sent through a FIR lowpass
filter (20 taps, Hamming window) with a cross over frequency of 100 Hz.
In sine and cosine filters each signal is decomposed into two components,
α and β, that are orthogonal in phase. It is shown in [Moore et al 1994],
that the magnitude response of the sine and cosine filters has an error of ±
1.5 %, if the frequency deviates from the nominal value 50 Hz by 1 Hz. As
the error is small and 1 Hz deviation is rather large, the problem is ignored.


Active and reactive power are then obtained as,


Pgen = iα ,genuα ,gen + iβ ,genuβ ,gen
Qgen = iα ,genuβ ,gen − iβ ,genuα ,gen







(6.1)


Pload = iα ,load uα ,gen + iβ ,load uβ ,gen
Q load = 0







(6.2)


The active and reactive power fed into T2, denoted Pline and Qline in
Fig. 6.4, are finally computed as,


Pline = Pgen − Pload
Qline = Qgen







(6.3)


The reason for going via the load active power, is that the load current was
easier to access for measurements.


6.3 Implementation


The computer hardware used for the implementation of the control system
consists of a Apple Macintosh IIci housing a DSP (Digital Signal
Processor) board [NB-DSP2300/2305] with a TMS320C30 and a general
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input/output board MIO-16 both from National Instruments [NB-MIO-16].
The floating point DSP executes all filters and estimators in Fig. 6.6.


DSP


3x220V


ir,load


ir,gen


ur,gen


ADC


Filters P,Q Estimators Filters


∆ω


Fig. 6.6 Block diagram of the control system with AD conversion, signal processing
and heating fans controlled by relay controlled thyristor switches.


The DSP communicates with a graphical user interface in LabVIEW
[LabVIEW] running on the host computer. The user interface shown in Fig.
6.7, makes it possible to change parameters, select modes of operation and
to monitor measurements during execution of the control program.


 OFF


 RUN


Manual


Mode


Load


0,00


delta


0,00


omega


0,00


control


kV


On


Off


AAA


Fig. 6.7 Graphical user interface in LabVIEW with numerical and graphical
indicators together with pushbuttons (far right). 6


Fig. 6.8 shows the computers for data logging, control and supervision as
they were arranged in the control room of the power station.
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Fig. 6.8 Instruments and computers for control, monitoring and data logging.


Fig. 6.9 The controlled active load consisting of four 5 kW heating fans.


The active load consists of four 5 kW heating fans as seen in Fig. 6.9. They
are operated with commercially available three-phase thyristor switches
mounted in the box shown in Fig. 6.10. The switches are controlled by
individual level detectors with selectable levels ∆ωon  and ∆ωoff (see
Chapter 5) for turning on and off. As the levels are manually selected with
a limited accuracy, the switching instants of the fans will differ. An
alternative would be to let the DSP take care of the switching decision.
This preferable solution would guarantee simultaneous switching, but was
not implemented at the time of the field test.
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Instead of using the ∆ω estimate, the relays can be connected to a signal
generator (seen on top of the oscilloscope in Fig. 6.8), which simplifies the
creation of a load switching sequence with a certain frequency. A third
source for relay control is a manual push-button located on the front panel
of the user interface together with the switch for relay control source
selection.


Fig. 6.10 The three-phase thyristor switches are mounted in a box with length 50 cm.


6.4 Simulation Model


A successfully calibrated simulation model is very helpful for the analysis
of measurements, as it provides a minimum description of the essential
system characteristics. This is particularly valuable when control is based
on state estimates, since the controller uses a subsystem model. The
agreement between estimate and non-accessible quantity can then readily
be studied in the simulation model.


Component Models


The generators have salient pole rotors with no damper windings. The DC
exciters have rheostats that are manually controlled. The turbines can be
controlled by flyball governors (see Fig. 6.1) for constant frequency, but
are normally set for constant power. The simulation model of the system in
Fig. 6.3 therefore uses the third order synchronous generator model of
EUROSTAG. Its mechanical power and field voltage are set to be constant.
The distribution areas are represented by voltage-independent active loads.
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Lines, cables and transformers are modelled using standard π-links and the
20 kV bus is made an infinite bus.


Parameters


Generator parameters that quantify dynamic performance typically require
special tests in order to be identified explicitly, as they are very difficult to
determine during normal operation. An example is the load rejection test,
that was carried out to determine the inertia constant H. The generator is
then electrically disconnected at a low turbine power level with the
governor set for constant frequency. The initial acceleration, before
governor action shuts down the turbine, together with the known turbine
power gives H.


Tests to identify machine reactances could not be performed before the
feedback experiment. Instead the excitation test of Section 6.5 serves as
dynamic identification experiment. The calibration of the simulation model
is done in two stages, treated in more detail in Section 6.5: the first part
aims at agreement between simulated and measured generator output
power and the second deals with the estimator tuning.


The values of X1 and X2 used during the experiment, had to be based on
available data of the generator, transformers, lines and cables read from
rating plates, manufacturer data sheets and maps. It is important to realize
that, if their relative magnitudes are correct, modest changes of X1 and X2
only yield a rescaling of the ∆ω estimate. This will not alter the qualitative
behaviour of the control system and the results of the experiment.


6.5 Experiments


All experiments of the field test except the load rejection test, were
performed during three hours between two and five o'clock in the morning.
The same experiments have been simulated afterwards using the
measurements from one experiment for calibration of the simulation
model. To facilitate comparisons, the results of measurements and
simulations are presented together.


Synchronizing the Machine to the Grid


When the network state of Fig. 6.3 had been arranged, the generator was
synchronized to the network.
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Fig. 6.11 Measurement of generator active power following synchronization.


Fig. 6.11 shows the instant when the machine is connected to the network,
followed by an oscillation with slowly increasing amplitude. The damping
is thus not only low, but negative. According to [Kundur 1994] p 752 this
happens "when a hydraulic generator without damper windings is operating
at light load and is connected by a line of relatively high resistance to
reactance ratio to a large system", which is exactly the case here. Using the
K constants in [de Mello and Concordia 1969] the situation above makes
K4 negative. K4 is the "demagnetizing effect of a change in rotor angle"
and becomes negative when a factor of it is negative,


 xq + xline( )sin δ − Ra + rline( ) cos δ < 0 (6.4)


where rline+jxline is the line impedance while Ra,xq and δ are the armature
resistance, the q-axis reactance and the load angle of the machine
respectively.


With an unstable synchronous generator running, the damping system was
engaged for the first time. The oscillations amplitude started to decrease
indicating that, with only rough tuning of the three parameters X1, X2 and
∆ωon, the damper was actually functioning. Unfortunately the event was
not recorded. After disconnection of the machine, the procedure with
synchronization and activation of the damper was repeated, giving the
results shown on the cover page.


Excitation of Oscillations


Having selected 50 % of rated output a operating point, the instability of
the machine disappears as predicted by (6.4). The swing frequency of the
system is now determined through repeated switching of the controlled
load. By using the signal generator, different frequencies can conveniently
be tested. Hitting the swing frequency manifests itself as an oscillation with
increasing amplitude in most variables as seen in Fig. 6.12.
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Fig. 6.12 Excitation with signal generator: Pgen(t) (top), Qgen(t) (middle) from
experiment (solid lines) and simulation (dashed lines). The two lower
graphs show PL(t) from experiment and simulation (bottom).


While seeming simple, this experiment is extremely valuable: It
demonstrates how an oscillation with appreciable amplitude can be evoked.
This is a very important prerequisite for evaluating the performance of the
damping controller. Furthermore, by studying the behaviour after the load
switching has ceased in Fig. 6.12, the damping at the selected operating
point can be determined.


The load switching excites the system dynamics better than normal
operation. The measurements of Fig. 6.12 can therefore be used for
calibration of the simulation model as follows: the frequency of the free
oscillation is adjusted with xq. Subsequently x'd is adjusted so that a certain
portion of the load power is taken from the machine. Finally the correct
damping is set with D. The dashed lines in Fig. 6.12 are the results from
simulations using the calibrated model, which agree well with the
measurements. An exception is the amplitude of the Qgen which is 50 %
too small. At this operating point this is no problem as changing Qgen by a
factor of two affects the estimate of δ-θ by less 0.5°.
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Fig. 6.13 Excitation with signal generator: Estimates of ∆ω(t) and δ(t)  from
experiment (solid lines) and simulation (dashed lines). The fitted
exponential is used to demonstrate relay parameter selection. Its time
constant is 16 s and it asymptotically approaches 1.4 rad/s.


As the ∆ω estimate from the experiment in Fig. 6.13 exhibits no spikes,
there was no reason to alter the reactance values during the experiment.
From Fig. 6.13 it is evident that the estimates of ∆ω and δ from the
experiment agree well with the simulated ∆ω and δ. This indicates that the
estimator parameters were reasonable even if they were based on another
value of xq than that arrived at during the calibration.
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Fig. 6.14 Excitation with signal generator: True (solid lines) and estimated values of
∆ω(t) (dashed lines) from the simulation using X 1 and X 2 from the
experiment (top) and after calibration (bottom).


The upper part of Fig. 6.14 shows that the true ∆ω in the simulation and its
estimate are fairly similar using X1 from the experiment. By adjusting X1 to
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the new value of xq perfect agreement can be achieved as seen in the lower
part of Fig. 6.14.


As described in Section 5.3, the minimum value of the relay parameter
∆ωon  can be obtained from the excitation experiment. The fitted
exponential of Fig. 6.13 has a time constant of 16 s and asymptotically
approaches 1.4 rad/s. The load is switched with a frequency of 1.25 Hz. By
inserting this into (5.7) the minimum value of ∆ωon in order to avoid a
limit cycle can be determined to 0.035 rad/s.


Damping of Oscillations


Having checked the estimator, the damping controller can now be tested.
An oscillation is then evoked, using the same technique as above, but after
excitation ceases, the active damper is engaged. This is done for different
values of ∆ωon: 1, 1/4, 1/6 and 1/8 rad/s. Fig. 6.15 shows the results for
∆ωon=0.17 rad/s. Although the excitation stops earlier than in Figs 6.12
and 6.13, the added damping effect is evident.
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Fig. 6.15 Signal generator excitation until time 8.5 s followed by relay damping,
∆ωon =0.17 rad/s (dotted line): Pe(t) (top) and estimate of ∆ω(t) (middle)
from experiment (solid) and simulation (dashed). The two lower graphs
show PL(t) from experiment and simulation (bottom).


Whereas the signal path of the relay in Chapter 5 was free from delays, the
implementation used for the experiment includes several filters. Due to the
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resulting delay the load will be switched on at a higher ∆ω than ∆ωon and
off at a level less than ∆ωoff. While ∆ωoff was set to zero in Chapter 5, a
value equal to ∆ωon was used for the experiments. The switching is then
practically delayed until ∆ω passes zero, which is the desired instant.


Other values of ∆ωon give similar results: the oscillation is damped until
the amplitude of ∆ω is less than ∆ωon. Some differences are found: as
∆ωon is decreased, the time during which the load is connected will
increase. This causes the oscillation to be damped faster the smaller ∆ωon
is. Furthermore, as the system does not settle down entirely, the damping
controller is more active during steady state for small values of ∆ωon. This
is exemplified by Fig. 6.16, which shows damping performance for
∆ωon=0.125 rad/s.
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Fig. 6.16 Signal generator excitation until time 10 s followed a short interval of
natural damping and relay damping with ∆ωon =0.125 rad/s (dotted line):
Pe(t) (top) and estimate of ∆ω(t) (middle) from experiment (solid) and
simulation (dashed). The two lower graphs show PL(t) from experiment and
simulation (bottom).


As this steady state activity is judged too high, lower values of ∆ωon were
not tested. ∆ωon was thus never close to values that would give a limit
cycle.
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6.6 Conclusions


The field test clearly shows that an active load can be controlled to damp
power oscillations. It also demonstrates that a load that draws only 5 % of
the power supplied by the generator equally well can both excite
considerable oscillations and damp them. This agrees well with the
examples given in Chapter 5. The same behaviour can be reproduced, even
quantitatively, with the calibrated EUROSTAG simulation model. The use
of estimated rotor angular velocity is proved to be practically viable.


It is natural to compare the damper of the field test with a PSS (Power
System Stabilizer) as they solve the same problem and as PSSs exist, that
use the same estimated signal for feedback [Kundur 1994]. A PSS affects
the oscillating active power indirectly, by manipulating the field voltage of
the generator, which in turn changes the terminal voltage. This changes the
power output from the generator and the active power drawn by local
loads. The PSS contains circuitry that, when properly tuned, compensates
for the dynamics between its control input and the active power output of
the machine. Controlling active power as in the field test is more direct,
which eliminates much of the tuning work, which is the main disadvantage
of a PSS. The damper of the field test only required X1 and X2 to be chosen
so that the estimate of ∆ω is continuous. The relay parameter ∆ωon is
simply set so that the oscillation is sufficiently small. In comparison to a
PSS, this tuning is very straightforward and easily understandable.


The mode frequency estimation is easy to implement in radial networks,
such as distribution networks. In distribution networks loads are
electrically close to the machines, which makes them effective for load
control damping. The chosen test system thus represents a suitable location
of a load control damper.


The field test has given practical experience regarding system knowledge
and operational practice. This is an invaluable complement to simulations
and written material, that are usually the only sources of knowledge in
power engineering research.
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7
Using a Linear Damper


… in which root locus plots are used to explore the impact of a single
damper with two different feedback signals and locations of transfer
function zeroes in power systems are predicted using the spring-mass inter-
area mode model.


The mode controllability and mode observability measures given in
Chapters 3 and 4 indicate where to place the actuator and where to measure
the selected signal. In this chapter, the loop is closed and the gain of the
controller is chosen for maximum damping of selected modes.


The power system with one damper installed can be described as a single-
input single-output (SISO) system with a feedback controller. The
controller output is active power injection at the damper location, and the
controller input is either local bus frequency or rotor frequency of the
closest machine. With these measurement signals, the controller will be a
simple static gain. If instead angles are measured, the controller will
include a lead filter with approximately 90° phase advancement at
frequencies below a few Hertz. Whenever possible the analysis will
consider frequencies as measured directly.


Mode controllability and mode observability supply information that is
valuable for suggesting a suitable controller structure, but it is valid only at
zero gain. To explore the behaviour of a SISO system for gains greater than
zero the root locus method is adequate and is used in the instructive PSS
article [Larsen and Swann 1981]. The root locus is the path of the system
eigenvalues as the gain is varied from zero to infinity. Considering
damping of a certain mode, optimum gain is selected as the one that
produces maximum damping. The relationship to the previous measures is
close since the eigenvalue sensitivity supplied by the mode controllability
and mode observability provides the gradient at the starting point of the
root locus.


Often a root locus does not need to be traced out in detail to be sufficiently
informative. An approximate sketch can be produced by applying a number
of rules. According to one of these rules, eigenvalues move towards
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transfer function zeroes. If a zero is located at infinity, the eigenvalue will
approach along an asymptote, that can be determined by another rule.


The attraction of eigenvalues to zeroes plays a critical role by reducing the
control authority. Unfavourably located zeroes thus limit the maximum
damping. Consequently, understanding how zeroes arise and what governs
their locations is very valuable. This is studied in Section 7.1 by computing
the zeroes of the spring-mass inter-area mode equivalent subjected to
feedback from the different signals. Section 7.2 treats Multi-Modal
Decomposition, which is a model structure that improves the understanding
of transfer function zeroes that arise when trying to damp electro-
mechanical modes of power systems. In Section 7.3 and 7.4 a damper is
introduced in the three and twenty-three machine systems respectively.
Root locus plots are shown for the two different feedback signals and
optimum gains are selected. Section 7.5 concludes the chapter.


7.1 System Zeroes of the Spring-Mass Model


In accordance with the root locus rule mentioned above the zeroes can be
determined as the system eigenvalues for the case with infinite feedback
gain. This can be shown by assuming an open loop system with input u and
output y corresponding to Laplace transforms U(s) and Y(s). The transfer
function of the system is,


Y s( )
U s( )


= Z s( )
P s( )


Introducing the proportional control law,


U(s) = K Uref (s) − Y (s)[ ]
yields a transfer function from reference Uref(s) to output Y(s) as,


Y s( )
Uref s( )


= KZ s( )
P s( ) + KZ s( )


where an infinite gain K turns the roots of Z(s) into the eigenvalues of the
system. If np and nz are the degrees of the polynomials P(s) and Z(s), np is
assumed to be greater than nz and np-nz zeroes are infinite.
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Zeroes for Feedback from Local Bus Frequency


Feedback from local bus frequency to active power is introduced in the
spring-mass inter-area mode equivalent of Fig. 2.10 by letting the force F3
depend on the time derivative of x3 as,


F3 = d3ẋ3


This only requires d3 to be inserted as an element of the diagonal matrix in
(2.29),


diag


M1
M2
1
1
d3


















































d


dt


v1
v2
x1
x2
x3


























=


0 0 −k1 0 k1
0 0 0 −k2 k2
1 0 0 0 0
0 1 0 0 0
0 0 k1 k2 − k1 + k2( )


























v1
v2
x1
x2
x3


























+


1 0
0 −1
0 0
0 0
0 0


























F1
F2








(7.1)


Note that the model order is increased by one as x3 is turned from an
algebraic variable into a dynamic state. The diagonal matrix can now be
inverted and premultiplied from the left.


An infinite gain d3 causes the time derivative of x3 to be zero. As x3 is the
output of an integrator with zero input it yields an eigenvalue at the origin
and thus the first zero,


z1 = 0


As x3 cannot vary, it will not affect system dynamics and can therefore be
treated as a (constant) input. The remaining zeroes are thus obtained as the
eigenvalues of the system,


diag


M1
M2
1
1












































d


dt
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v2
x1
x2
























=


0 0 −k1 0
0 0 0 −k2
1 0 0 0
0 1 0 0
























v1
v2
x1
x2
























+


1 0 k1
0 −1 k2
0 0 0
0 0 0
























F1
F2
x3


















This gives


z2 = z3
* = j


k1


M1
;   z4 = z5


* = j
k2


M2
(7.2)


where * denotes complex conjugate. For an infinite gain, the system can be
viewed as two independent spring-mass systems, with separate resonance
frequencies. The four last zeroes are thus the mechanical resonances of the
system as the position x3 is fixed. This agrees perfectly with the result of
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[Miu 1991], that "complex conjugate zeros are the resonant frequencies of
a substructure constrained by the sensor and actuator". Note that whereas
the original system had one oscillatory mode, the system with infinite
feedback has two, as the rigid body mode is made oscillatory. The zero z1
at the origin reflects the fact that x3 can take any value.


From (7.2) the location of the zeroes relative to the eigenvalues of the
uncontrolled system is not evident, yet of great interest. Let


k1


M1
= γ k2


M2
(7.3)


where γ is a real number. The eigenvalues in (2.30) of the inter-area mode
for the uncontrolled system can now be described as,


λ1 = λ2
* = j


k1


M1


M1 + M2


γM1 + M2
= j


k2


M2
γ M1 + M2


γM1 + M2


It is now clear that a γ greater than one yields,


z4 < λ1 < z2


z5 < λ2 < z3


which is illustrated in the left graph of Fig. 7.1. A γ less than one gives the
opposite relations, but looks the same in the complex plane. If x3 is chosen
so that γ is exactly one, the location of the zeroes coincide with those of the
eigenvalues as indicated in the right graph of Fig. 7.1. This pole-zero
cancellation, also demonstrated in [Jones 1996], means that for γ equal to
one the suggested feedback controller would not move the eigenvalues at
all.
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Fig. 7.1 Locations of oscillatory eigenvalues (x) and zeroes (o) for γ  greater than
one (left) and equal to one (right).
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This agrees well with Chapter 3 and 4, which show that for the considered
input and output signals, both controllability and observability of the inter-
area mode are lost when γ is one. In the power system case, γ relates the
mass-scaled electrical distances from the actuator to the machines. In order
for the damping controller to be effective, it should be placed so that γ is
far from one, as this moves the zeroes away from λ1 and λ2. Note that loss
of mode observability and mode controllability both on their own will
cause zeroes to coincide with the eigenvalues of the mode.


Although the locations of both zeroes and open-loop eigenvalues are
determined as in Fig. 7.1, little can be said about the general shape of the
root locus branches. This is clearly illustrated by Fig. 7.2. It shows the root
locus of the spring-mass inter-area mode model for three values of M1
while M2, k1 and k2 are held constant.
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Fig. 7.2 Root locus of the spring-mass inter-area mode model with feedback from
time derivative of x3 to F3. M1 takes the values 3 (left), 4 (middle) and 10
(right) while k1=5, k2=10, M2=2.


Zeroes for Feedback from Closest Machine Frequency


In the spring-mass inter-area mode model, the equivalent to closest
machine frequency is v1 if γ is greater than one and v2 if γ is less than one.
Without loss of generality, γ is assumed to be less than one in the
following. The control law is consequently,


F3 = d3v2


which changes only a single element of (2.29) as,


diag


M1
M2
1
1
0
















































d


dt
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0 0 −k1 0 k1
0 0 0 −k2 k2
1 0 0 0 0
0 1 0 0 0
0 −d3 k1 k2 − k1 + k2( )
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+
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(7.4)







108 7. Using a Linear Damper


Eliminating x3 yields,


diag


M1
M2
1
1












































d


dt


v1
v2
x1
x2
























=


0 −k1βd3 −k1βk2 k1βk2
0 −k2βd3 k1βk2 −k1βk2
1 0 0 0
0 1 0 0
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x1
x2
























+


1 0
0 −1
0 0
0 0
























F1
F2








(7.5)


where β-1=k1+k2. By now letting the gain d3 go to infinity, the resulting
eigenvalues of the closed loop system are the zeroes of the open loop
system. The feedback path from v2 to its time derivative is made very fast
and thus prevents deviations from zero in v2. The corresponding eigenvalue
is dominated by this path and yields the first zero,


z1 ≈ − k2


k1 + k2


d3


M2
→ −∞


The state x2 can be any constant value and will thus contribute to the
system dynamics as an eigenvalue in the origin, giving


z2 = 0


As v2 is zero, so is its time derivative. From the second row of (7.4) it can
then be concluded that x3 will be constant, as it depends only on x2 and F2
that both are constants. A small part of (7.4) now describes the remaining
dynamics,


diag
M1
1


















d


dt
v1
x1










= 0 −k1
1 0










v1
x1










+ 1 k1
0 0










F1
x3










which yields two imaginary zeroes,


z3 = z4
* = j


k1


M1


For infinite gain the mass M2 and the point described by x3 are thus fixed
and F3 absorbs the forces caused by the swinging mass M1. The resulting
dynamics equals a part of that for infinite gain feedback from local bus
frequency. It is therefore natural that z3 and z4 obtained here agree with z2
and z3 of (7.2). Again the zeroes can be compared to the eigenvalues λ1
and λ2. As γ is assumed to be less than one here, the oscillatory zeroes have
a frequency less than that of the original inter-area mode, as shown in
Fig. 7.3.
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Fig. 7.3 Locations of oscillatory eigenvalues (x) and zeroes (o).


Again the rule of [Miu 1991] above applies, as the complex conjugate
zeroes are the resonance frequencies of the substructure that can move,
when the sensor and the actuator are fixed.


Remark: Equation (7.5) can be formulated as ẋ = Ax + Bu . The trace of A
is obtained by summing the diagonal elements, which in this case yields the
expression for z1 above. The trace of A equals the sum of the eigenvalues,
which for infinite gain is z 1 . It can thus be concluded that the
approximation of z1 can be skipped making z1 equal to the expression
given.


7.2 Multi-Modal Decomposition


The modal description of the system with constant gain output feedback,


ż = Λ + ∆Λ[ ]z = Λ + ψB ode I − KD ode( )−1KC ode Φ[ ]z (7.6)


also given as (2.10), shows that for large gains, the direct matrix Dode
needs to be taken into account. For the scalar control law u=Ky an infinite
feedback gain K gives the eigenvalues and consequently the zero locations
as,


Λ + ∆Λ = Λ − ψBodeDode
−1 CodeΦ (7.7)


where Dode plays a central part. From (2.29) it can be realized that using
local phase angle as measurement signal and active power as control signal
yields a nonzero Dode, since both input and output are algebraic variables
related through an algebraic equation. As a lead filter also includes a direct
term, the same applies for feedback from local bus frequency. On the other
hand the frequency of the closest machine is a dynamic state. Therefore
feedback from this signal to active power does not give rise to a direct
matrix. But how can the zero locations be similar as in Fig. 7.1 and 7.3,
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when Dode is zero in one case and not in the other? The answer is that
impact of other system modes is more important. A simplified, yet very
powerful illustration to this is given in [Larsen et al 1995], where Multi-
Modal Decomposition (MMD) as in Fig. 7.4 is applied.
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Fig. 7.4 Partial Multi-Modal Decomposition according to [Larsen et al 1995], with
transfer function blocks Kci(s), K o i(s), K m i(s), K ILi(s) specifying the
connections between inputs, outputs, velocity and angle of an electro-
mechanical mode.


Mode i is then extracted and modelled as a modal system, connected to an
input and an output via transfer functions Kci(s) and Koi(s) corresponding
to the mode controllability and observability factors. The power system
damping controller KPSDC(s) forms a feedback loop from the output to the
input. The rest of the system is represented by a transfer function KILi(s).


Together with the controller, KILi(s) forms an inner loop that bypasses the
dynamics of the mode to be damped. Transfer function zeroes occur at
complex frequencies, for which KILi(s) and the path via the modal system
cancel each other. KILi(s) thus largely determines the location of zeroes. As
Dode is only a (constant) part of KILi(s) it only partly affects the zeroes.


The aim of the damping controller is to move the eigenvalues of mode i. If
the mode is lightly damped and if its frequency and mode shape are not
altered considerably by the control, the shift can be approximated
according to [Larsen et al 1995],
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∆λ i ≈ − 1
2


K ci I − K PSDC K ILi( )−1K PSDC K ci (7.8)


where all transfer functions are evaluated at s=jωi; the eigenfrequency of
λi. Note the resemblance between the matrix expression (7.6) and (7.8)
using transfer functions.


From Fig. 7.4 it is obvious, that if the selected inputs and outputs are
weakly related to mode i, then the inner loop will be relatively more
important. This fact is particularly important for dampers that are located
far away from the generators with both measurement signals and their
actuator outputs indirectly related to the swing mode dynamics. This
applies for the damping systems analysed above and for all FACTS
dampers.


The existence of a nonzero KILi has two consequences: as discussed above,
it limits the control authority by introducing zeroes. But it can also cause
instability if,


KPSDC jωi( )KILi jωi( ) = I


In either case, feedback signal selection is critical since a good choice
yields a small inner loop gain. To guarantee that a SISO system is robust to
variations in KILi, the controller gain should be chosen so that


KPSDC jωi( ) KILi jωi( ) GM = 1


where GM is a suitable gain margin [Larsen et al 1995]. If G M is
sufficiently large, the parenthesized expression of (7.8) is approximately
equal to unity. The eigenvalue shift due to this maximum gain is termed
Maximum Damping Index  (MDI) in [Larsen et al 1995] and is dominated
by the controllability and observability factors Kci and Koi together with
the controller.


When analyzing the joint operation of several damping controllers, KPSDC
and KILi are transfer function matrices. The stability limit is now described
by,


max eig KPSDC jωi( )KILi jωi( )[ ] GM = 1


By searching the space spanned by the controller gains, GM  may be
maximized. The resulting gains and GM, can then be used for a multi-
controller MDI  which is described in [Othman et al 1995].
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Fig. 7.5 Block diagram of a controller that cancels Dode.


It may seem that the inner loop can be cancelled by compensating for it in
the controller. As an example Dode can be compensated for, if the
controller KPSDC(s) is replaced by the control law in Fig. 7.5,


U s( ) = KPSDC s( )
1 + KPSDC s( )Dode


Y s( )


where U(s) and Y(s) are the Laplace transforms of the input and the output
signals. In the case when phase angle is measured, and the control signal is
active power, the controller is a lead filter with a gain d3 and a rather small
time constant T ,


KPSDC s( ) = d3s


1 + sT
;  Dode = −1


k1 + k2


Inserting this into the control law above yields,


U s( ) =


d3s


1 + sT


1 + d3s


1 + sT


−1
k1 + k2


Y s( ) = d3s


1 − s
d3


k1 + k2
− T










Y s( )


The eigenvalue of the controller will be positive already for small values of
the gain d3. As an unstable controller is not desired, compensation of Dode
is avoided.
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7.3 Three Machine System


The suggested controllers are now numerically evaluated for the three
machine system. The aim is to damp both oscillatory electro-mechanical
modes with the active power injection of one damper. The magnitude
information of Table 3.1 shows that bus N8 is the preferred location, even
if bus N6 would yield slightly better controllability of the 1.8 Hz mode.
The active power is controlled proportional to the local bus frequency or to
the frequency of the closest machine.


Local Bus Frequency


Neither the spring-mass model nor the EUROSTAG models feature bus
frequency as a natural state. Instead it is obtained by lead filtering a
measurement of the phase angle at the bus. The transfer function of the
resulting controller is,


P s( )
θ s( )


= Kd
s


1 + sτ
(7.9)


where the time constant τ is set to 10 ms and Kd is the damper gain to be
determined. This yields a phase advance of 85.4° at 1.3 Hz and 83.4° at 1.8
Hz, which is fairly close to the desired 90°.


According to (2.11), the eigenvalue sensitivity to the gain Kd can be
obtained by multiplying the complex numbers for active power mode
controllability and phase angle mode observability. In this case the
controller has dynamics, and therefore the controller transfer function in
(7.9) without Kd and evaluated at the mode frequency, is required as a third
factor. The resulting numbers are given in Table 7.1, which indicates that
in all cases the eigenvalues initially move almost straight to the left. The
magnitude information supports the decision to place the damper at bus N8
with the very same reasoning as that based on controllability alone.


Bus 1.3 Hz mode 1.8 Hz mode


N5 0.330e-j166° 0.032e-j138°


N6 0.239e-j164° 0.327e-j168°


N8 1.582e-j174° 0.281e-j160°


Table 7.1 Eigenvalue sensitivity of the electro-mechanical eigenvalues in the second
quadrant to local feedback from bus frequency to active power at the three
load buses.
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Introducing the controller at bus N8 and varying the gain yields the root
locus of Fig. 7.6, which resembles that of the right graph of Fig. 7.2. The
two oscillatory modes of the three machine system have zeroes with higher
frequency and comparable damping when compared to the uncontrolled
system eigenvalues. The behaviour of the spring-mass model inter-area
mode thus agrees perfectly with both these modes. The third zero on the
imaginary axis is a new electro-mechanical mode, replacing the rigid body
mode. This is natural as the number of machines and modes are related: an
N machine system has N-1 oscillatory modes. The introduction of the
damper with infinite gain acts like a reference machine, thereby increasing
the number of oscillatory modes by one.
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Fig. 7.6 Root locus for feedback from local frequency at bus N8 to active power
injection at the same bus. Eigenvalue locations for the gains  zero (+),
0.87 p.u./(rad/s) (x) and infinity (o) are indicated.


As predicted by the eigenvalue sensitivity measures, the 1.8 Hz mode is
less influenced by the controller than the 1.3 Hz mode. Although both
modes are damped, maximum damping does not occur for the same gain in
both cases. The damping ability of the controller is best used by giving
priority to the 1.3 Hz mode and maximize its damping by selecting the gain
0.87 p.u./(rad/s). This corresponds to 550 MW/Hz and the eigenvalues
-1.1±j11.5, -1.7±j8.8 and -2.7±5.0 indicated by 'x' in Fig. 7.6.
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Closest Machine Frequency


The active power injection at bus N8 will now be controlled by the rotor
frequency of the closest machine. For the spring-mass model the control
action and the measurement are then done on the same side of the swing
node. This gives active power mode controllability and phase angle mode
observability the same sign. For the three machine system this is
demonstrated for each mode using the 3D-graphs of Figs 3.3 and 4.3. The
mode observability of machine frequency is proportional to that of machine
angle, which can be obtained by extrapolating the phase angle observability
in the network beyond the machine terminals. This method indicates S2
and S3 as possible candidates for the 1.3 Hz mode while S3 and perhaps
H1 can be used for the 1.8 Hz mode. Despite the uncertainty about the sign
of the machine frequency controllability of H1 for the 1.8 Hz mode, it is
clear that only S3 can be used for simultaneous damping of both modes.


A safer alternative is to use the exact observability information of Table
4.3. Combining this with the active power mode controllability at bus N8
in Table 3.1  gives the eigenvalue sensitivities of Table 7.2.


Machine 1.3 Hz mode 1.8 Hz mode


H1 1.321ej2° 0.093ej13°


S2 3.902e-j175° 0.917e-j3°


S3 2.358e-j173° 3.081e-j175°


Table 7.2 Eigenvalue sensitivity of the electro-mechanical eigenvalues in the second
quadrant to feedback from machine frequency to active power at bus N8.


It is now evident that S3 is the only choice that will move the eigenvalues
of both modes to the left. It also has the greatest impact on the 1.8 Hz mode
and an acceptable influence on the 1.3 Hz mode, but this is less important
than having the correct phase.
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Fig. 7.7 Root locus for feedback from frequency of machine S3 to active power
injection at bus N8. Eigenvalue locations for the gains  zero (+),
0.5 p.u./(rad/s) (x) and infinity (o) are indicated.


Active power injected at bus N8 controlled by the rotor frequency of
machine S3 gives the root locus of Fig. 7.7. Both the oscillatory modes
move towards zeroes with low damping and lower frequency than the
eigenvalues of the uncontrolled system. Just like for the bus frequency
feedback case, both modes behave like the inter-area mode of the spring-
mass model.


When increasing the gain from zero both the modes will be better damped.
As the eigenvalue sensitivity of the 1.8 Hz mode to the feedback gain is
greater than that of the 1.3 Hz mode, the 1.8 Hz mode reaches its point of
maximum damping first. Close to this the real parts of both these
eigenvalues are equal, which means that both modes have the same
absolute damping. This point with gain 0.5 p.u./(rad/s) corresponding to
310 MW/Hz, is therefore considered the optimum one giving the
eigenvalues -1.8±j7.7 and -1.8±j10.3, indicated by 'x' in Fig. 7.7.


It should be mentioned that both modes could be damped also if feedback
were taken from S2. This however requires a compensation network that
yields 180° phase shift between the two mode frequencies. Although
possible, the simple gain suggested above is preferred due to its inherent
structural robustness to changes in e.g. eigenfrequencies.
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7.4 Twenty-three Machine System


Controlled active power injection at a load bus is now introduced in the
twenty-three machine system. The main objective of the controller is to
increase damping of the three least damped modes in the fault case when
the double line N4044-N4045 is out. The selected modes in Table 2.2, are
given priority in proportion to their need of additional damping.


Table 3.2 shows that the active power controllability of Mode 1 is greatest
at bus N4072 followed by  N63 and N4071. The External area including
N4072 is however considered inaccessible and the damper is therefore
placed at N63. It exhibits the greatest mode controllability of Mode 2 and
is reasonably effective for Mode 3 as well.


The active power injection is controlled in proportion to the local
frequency or to the frequency of the closest machine. Both cases are
examined starting with local bus frequency.


Local Bus Frequency


Just like for the three machine system, the phase angle is measured and sent
to the controller (7.9). The eigenvalue sensitivity to the gain Kd at each
load bus can now be derived as in the previous section. It shows that local
feedback from bus frequency to active power at any bus has either a
beneficial or a negligible effect on damping of the three modes. At the
buses with large sensitivity magnitude, the direction is close to the desired
±180°, and at buses with an argument between +90° and -90°, the
magnitude is so small that the eigenvalue will not move far. Table 7.3
contains the results for the buses N51 and N63.


Bus Mode 1 Mode 2 Mode 3


N51 0.187e-j176° 0.223e-j171° 0.020ej22°


N63 0.167e-j171° 0.063e-j172° 0.055ej175°


Table 7.3 Eigenvalue sensitivity of the selected eigenvalues in the second quadrant to
local feedback from bus frequency to active power at the load buses N51
and N63.


Bus N51 is included as both Mode 1 and 2 are most sensitive to feedback
there. This does not coincide with maximum active power mode
controllability, which occurs at bus N63. The control signal magnitude of
the damper at N63 may therefore differ from that at N51 if the two
controllers are tuned for the same damping of these modes.
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According to Table 7.3, Mode 3 will initially be less damped as the gain of
the controller at N51 is increased from zero. This information can also be
obtained from Fig. 3.5 together with Fig. 4.5: for Mode 3, the active power
mode controllability and the phase angle mode observability have different
signs at the buses N51, N4045 and N1045 respectively. In all other cases
they have the same sign, corresponding to an initial leftward eigenvalue
shift, when the gain of a local controller like (7.9) is increased from zero.


Bus N63 is chosen for its high controllability of Modes 1 and 2, but in
order to explore the consequences of the inappropriate phase shift, bus N51
will also be studied. The root locus plots of Figs 7.8 and 7.9 show the
eigenvalue locations for a varying controller gain Kd at the buses N51 and
N63 respectively. The clutter at the real axis is due to the difficulty to trace
the eigenvalues correctly and can be disregarded.
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Fig. 7.8 Root locus for feedback from local frequency at bus N51 to active power
injection at the same bus. Eigenvalue locations for the gains  zero (+),
2.78 p.u./(rad/s) (x) and infinity (o) are indicated. The right graphs show
details from the left plot: Mode 3 (upper) and rigid body mode (lower).


The eigenvalues of most electro-mechanical modes coincide with zeroes,
indicating insignificant mode controllability or mode observability. Only
three modes are considerably affected by the controllers. A slow complex
mode goes unstable for sufficiently large gain, while Mode 1 and 2 move
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via increased damping towards zeroes with higher frequency and relatively
low damping.


According to the spring-mass model, the slow complex undamped zeroes
form a new electro-mechanical mode that replaces the rigid body mode.
The right eigenvectors of the unstable zeroes in Figs 7.8 and 7.9 in both
cases exhibit the characteristics of a rigid body mode – the mechanical
states of all machines are most active and move in unison. Note that the
branches ending at the unstable zeroes have different origins in the two
cases. The rigid body zeroes thus need not originate in the open-loop rigid
body mode.


−4 −2 0


0


1


2


3


4


5


6


7


8


9


10


Real


Im
ag −0.35−0.3−0.25−0.2−0.15


4.45


4.5


4.55


4.6


4.65


Real


Im
ag


−1 −0.5 0
−0.5


0


0.5


Real


Im
ag


Fig. 7.9 Root locus for feedback from local frequency at bus N63 to active power
injection at the same bus. Eigenvalue locations for the gains  zero (+),
4 p.u./(rad/s) (x) and infinity (o) are indicated. The right graphs show details
from the left plot: Mode 3 (upper) and rigid body mode (lower).


In Fig. 7.8 the eigenvalues of Mode 3 move to the right as predicted.
Before reaching very far, they are however attracted by nearby zeroes with
higher frequency and higher damping. Mode 3 is thus practically unaltered
and can be disregarded when selecting the gain. This is instead a
compromise between damping of Mode 1 and 2. As Mode 1 should be
given priority, it is natural to maximize its damping.
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For the N51 case the gain 2.78 p.u./(rad/s) or 1750 MW/Hz moves Mode 1
to -0.5±j3.4 and Mode 2 to -1.0±j4.3 which is indicated by 'x' in Fig. 7.8.
The damping of Mode 3 is unaltered just like that of the eigenvalues
passing the imaginary axis for large gains.


With the damper at N63 the optimum gain is chosen as 4 p.u./(rad/s) or
2500 MW/Hz, which places Mode 1 at -0.9±j3.5 and Mode 2 at -0.85±j4.4
(indicated by 'x' in Fig. 7.9) while the damping of Mode 3 is slightly
improved. The eigenvalues moving towards the unstable zeroes have come
closer to the imaginary axis, but are still well damped.


It is important to realize that when the eigenvalues are shifted as in Figs 7.8
and 7.9, the eigenvectors are also affected. Fig. 7.10 illustrates the complex
values of the active power mode controllability at the load buses, for the
gains d51=2.78 and d63=4 p.u./(rad/s) respectively.
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Fig. 7.10 Complex active power mode controllability at the load buses when one
damper is in use. For the upper graphs the damper location is bus N51 with
gain d51=2.78 p.u./(rad/s), while for the lower graphs the location is bus
N63 and the gain d63 is 4 p.u./(rad/s).


Comparing Fig. 7.10 to the situation with no dampers in Fig. 3.4, shows
that the damper has a strong effect on the argument of the eigenvector
elements. It is clear that the eigenvectors of Modes 1 and 2 are affected the
most, which is expected as it was the corresponding eigenvalues that
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received the most additional damping. The same applies for the complex
phase angle mode observability at the load buses, shown without dampers
in Fig. 4.4 and in Fig. 7.11 for the two single damper cases above.
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Fig. 7.11 Complex phase angle mode observability at the load buses when one
damper is in use. For the upper graphs the damper location is bus N51 with
gain d51=2.78 p.u./(rad/s), while for the lower graphs the location is bus
N63 and the gain d63 is 4 p.u./(rad/s).


Due to the greater variation in arguments it is now impossible to fit a
straight line to the controllability values as in Fig. 3.4 or to the
observability values as in Fig. 4.4. The 3D-visualization of active power
mode controllability and phase angle mode observability used in Chapters
3 and 4 can therefore now only be applied to Mode 3, that is practically
unaffected by the two suggested dampers.


Closest Machine Frequency


For loads that are directly or radially connected to a machine bus, the active
power controllability of all modes is similar at the load and at the machine.
The identification of the closest machine is therefore trivial at the load
buses N1012, N1013, N1022, N1042, N1043, N2032, N4071, N4072, N41,
N42, N47, N51, N62 and N63. The machine closest to bus N63 is thus
A4063.
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Fig. 2.9a also indicates that the machine frequency observability of Mode 1
and 2 is greatest at A4051. This agrees well with the large bus frequency
observability at bus N51 and may even compensate for the lower active
power controllability there. Active power injection at bus N51 controlled
by the machine frequency of A4051 is therefore considered along with the
combination of N63 and A4063. To start with, the frequency signals are
taken from machine 1 at each plant.


Table 7.4 shows the eigenvalue sensitivity of the selected modes to the two
feedback alternatives. Indeed both Mode 1 and 2 are more sensitive to the
control of active power at bus N51 than at bus N63. On the other hand,
Mode 3 exhibits a rightward direction like in the local bus frequency case.


Bus Machine Mode 1 Mode 2 Mode 3


N51 A4051_1 0.265e-j178° 0.395e-j174° 0.040ej19°


N63 A4063_1 0.236e-j173° 0.152e-j170° 0.117ej173°


Table 7.4 Eigenvalue sensitivity of the selected eigenvalues in the second quadrant to
feedback from ωA4051_1 and ωA4063_1 to active power injection at bus N51
and N63 respectively.


The root locus plots resulting from a gain variation in each case are given
as Figs 7.12 and 7.13. Again the controller substantially influences only
three modes, while most of the electro-mechanical modes are cancelled by
zeroes. Two of the selected modes are damped, while another mode moves
towards a pair of complex unstable zeroes just like in Figs 7.8 and 7.9.
Whereas the achievable damping of one mode is comparable to that in the
bus frequency case, the other one can be almost completely damped.
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Fig. 7.12 Root locus for feedback from rotor angular velocity of A4051_1 to active
power injection at bus N51. Eigenvalue locations for the gains zero (+),
2.4 p.u./(rad/s) (x) and infinity (o) are indicated. The right graphs show
details of Mode 3 (upper) and the origin (lower).


Although the locations of zeroes are very similar in Figs 7.12 and 7.13, the
resulting plots are different and look like the left and right graphs of Fig.
7.2. For active power injection at bus N51, the maximum damping of Mode
1 is limited while that of Mode 2 is very high. The location N63 gives the
opposite result. This difference in damping ability was not seen when using
bus frequency for feedback. A possible explanation is that Modes 1 and 2
change identities as their branches come very close in Fig. 7.12. A similar
phenomenon is reported in [Klein et al 1992]: measures based on
eigenvectors are incorrect when two eigenvalues are close. Due to the
uncertainty about who is who of the two modes, they will be addressed as
the fast and slow study mode.
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Fig. 7.13 Root locus for feedback from rotor angular velocity of the machine
A4063_1 to active power injection at bus N63. Eigenvalue locations for the
gains zero (+), 2.6 p.u./(rad/s) (x) and infinity (o) are indicated. The right
graphs show details of Mode 3 (upper) and the origin (lower).


Mode 3 initially moves to the right in Fig. 7.12, but in both cases it is
practically uncontrollable. The gain selection is therefore based on the two
first modes. The gain for active power at bus N51 controlled by the rotor
angular velocity of the machine A4051_1 is set to 2.4 p.u./(rad/s) or 1500
MW/Hz, which yields maximum damping of the slow study mode (-
0.7±j3.5) and even better damping of the fast one (-0.9±j3.8) as indicated
by 'x' in Fig. 7.12. The optimum gain for controlling active power at bus
N63 is 2.6 p.u./(rad/s) or 1600 MW/Hz. This maximizes the damping of the
fast study mode (-0.6±j4.2), while that of the slow study mode is slightly
better (0.8±j3.1) as indicated by 'x' in Fig. 7.13.


The eigenvalue shifts achieved above again implicate a change in the
eigenvectors. The active power mode controllability at the load buses is
shown in Fig. 7.14 for the gains d51=2.4 and d63=2.6 p.u./(rad/s).
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Fig. 7.14 Complex active power mode controllability at the load buses when one
damper is in use. For the upper graphs the damper location is bus N51 with
gain d51=2.4 p.u./(rad/s), while for the lower graphs the location is bus N63
and the gain d63 is 2.6 p.u./(rad/s).


The machine frequency mode observability, which resembles the mode
shape, is shown in Fig. 7.15 for the cases when d51=2.4 or d63=2.6
p.u./(rad/s). Modes 1 and 2 again experience a great variation in arguments
as compared to Figs 3.4 and 4.4 that show the corresponding values when
no damper is present.
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Fig. 7.15 Complex mode observability for machine frequency when one damper is in
use. For the upper graphs the damper location is bus N51 with gain d51=2.4
p.u./(rad/s), while for the lower graphs the location is bus N63 and the gain
d63 is 2.58 p.u./(rad/s).


Selecting d51=2.4 p.u./(rad/s) places the eigenvalues of Modes 1 and 2
fairly close to each other and it is clear from Fig. 7.12 that the root locus
branches are attracted to each other. The upper parts of Figs 7.14 and 7.15
indicate that the eigenvectors of the two modes are quite similar. As the
modes are identified by their eigenvectors, it is hard to tell them apart at
this point. This observation supports the assumption above that Modes 1
and 2 actually change identities with each other for a value of d51 close to
2.4.


An alternative to using the rotor velocity of one machine at a power station
is the average velocity of both machines. However, this has no effect on the
results given here, as the operating points of machine 1 and 2 are
completely or almost identical. For all electro-mechanical modes except the
local mode, the two machines then operate as one of twice the size. But the
local mode, where they swing against each other, is not controllable with
active power injection in the network.
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7.5 Conclusions


Controlling active power at one bus in proportion to the local bus
frequency or the frequency of the closest machine can increase damping of
more than one mode, while leaving other modes unaffected. Damping is
however limited as the eigenvalues tend towards zeroes with low damping.
The locations of these zeroes relative to the open-loop eigenvalues are
qualitatively the same for the inter-area mode of the spring-mass model as
for the electro-mechanical modes of the multi-machine power systems. In
both cases rigid body zeroes with little or even negative damping arise.


No certain statements can be made about the shape of the root locus. If the
modes are sufficiently far from each other in the complex plane, the
branches are in general semi-circular. The same shape is observed, when
changing the parameters of a load model where the active power depends
dynamically on the voltage [Hiskens and Milanovic 1995]. If instead both
eigenvalues and eigenvector shapes are sufficiently close the branches
interact. A consequence of this is that modes may change identities even if
their branches do not meet. This is observed for Modes 1 and 2 in Fig.
7.12, but also explains the fact that the unstable zeroes represent a rigid
body mode even if the branches leading to them do not originate in the
rigid body mode eigenvalues of the open loop system.


The impact of zeroes on the damping of a mode is reduced as the
measurement signal is closer related to a machine that participates strongly
in the mode. Mode 1 and 2 are dominated by the machines A4063 and
A4051 respectively. Placing the controller close to A4063 will therefore
promote damping of Mode 1 rather than Mode 2, while the opposite applies
for a location at A4051.


Gains are chosen for maximum damping of either Mode 1 or 2 and
reasonable damping of the other one, even if acceptable damping is
obtained already at much lower gains. This gives values of 1250-2500
MW/Hz which agrees well with the gains suggested on page 143 in [Smed
1993] for the damping controller of the Fenno-Skan HVDC link. The gains
can also be compared to the characteristics of the NORDIC32 system
[CIGRÉ 1995]: the frequency sensitivity of the loads is 165 MW/Hz and
the total frequency control gain of 4375 MW/Hz at steady state.
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8
Using a Second Linear Damper


… in which a second damper is introduced in the test systems and it is
shown that a damper using local bus frequency can be tuned using the
concept of impedance matching.


The incentive for using a second damper is that two dampers will yield
more damping than one. It is expected that they can provide damping of a
greater number of modes together, particularly if the dampers are far apart
and are aimed at modes associated with widely different parts of the
system. But if the second damper instead is placed close to the first one,
they are likely to interact in the damping of the same modes. The
characteristics of this interaction is less obvious. In this chapter, both types
of locations will be studied.


In Section 8.1 a second damper is introduced in the spring-mass inter-area
mode equivalent. Some generic cases for both local bus frequency and
closest machine frequency feedback are given and are studied numerically.
A useful finding is that tuning a damper using local bus frequency for
maximum damping of a mode, is equivalent to impedance matching. This
is shown through a comparison with an electric circuit, and can be used to
explain the behaviour observed for the power systems in Section 8.3. But
first Section 8.2 discusses possible dependencies between modes and
dampers in larger systems. They motivate the use of routines that optimize
an objective function but this hides the dependencies between specific
modes and gains. As understanding is more important than optimality here,
other methods are chosen: for the three machine system the modes are
studied separately when varying the two gains. For the twenty-three
machine system all eigenvalues are followed but only one gain is varied at
a time. Section 8.3 thus explores the impact of two dampers on the three
machine system. This gives valuable information on damper interaction in
a meshed network, which makes it possible to interpret the results for the
twenty-three machine system in Section 8.4. After studying two dampers
that both aim at Modes 1 and 2, one of them is replaced by a damper that
instead improves the damping of Mode 3. The conclusions of the chapter
are given in Section 8.5.
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8.1 Spring-Mass Inter-Area Mode System


The use of two dampers requires two control inputs at separate locations in
the network. In the spring-mass model of Fig. 8.1 this corresponds to the
force inputs F3 and F4.


F3
M1 k1 k3


x1
x3


M2


x2


k2


x4


F4


F2F1


Fig. 8.1 Spring-mass inter-area mode system with force inputs.


In the following it is convenient to view the three springs as parts of one
spring with spring coefficient k. First assume that F3 and F4 are zero. By
letting the spatial coordinates a and b specify the points x3 and x4 relative
to the distance from x1 to x2 respectively, the joint spring is divided into
three parts being a, b-a and 1-b of the full length:


1
k1


= a


k
;   


1
k3


= b − a


k
;   


1
k2


= 1 − b


k
;


It is easy to show that the three springs coupled together yield a spring with
the spring coefficient k,


1
k1


+ 1
k2


+ 1
k3


= 1
k


Changing a and b to relocate the forces F3 and F4 will not alter the
resonance frequency,


k
1


M1
+ 1


M2










(8.1)


which can  be compared to (2.30). Whereas eigenvalues and zeroes of the
uncontrolled system could be determined analytically, the behaviour for
finite gains require numeric treatment. This is done below for feedback
from local bus frequency and from the frequency of the closest machine.
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The candidate location with the highest mode controllability is chosen for
the first damper. The mode controllability of the second damper is
consequently lower.


Local Bus Frequency


As shown in Section 4.3 feedback from local bus frequency to active power
is equivalent to a viscous damper in the spring-mass model. Two dampers
thus give the system in Fig. 8.2.


d3


M1 k1 k3


x1
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M2


x2


k2


x4


d4


F2F1


Fig. 8.2 Spring-mass inter-area mode system with two dampers.


F1 and F2 are omitted as they are constant and will not affect the dynamics.
To demonstrate the relationship between damping and the parameters,
some numerical values are chosen: M1, M2 and k are 1 kg, 4 kg and 5 N/m
respectively, giving a resonance frequency of 2.5 rad/s. The location a of
the first damper is set to 0.4. This gives a root locus for a varying d3 and
zero d4 similar to the right graph of Fig. 7.2. This behaviour is also
representative of Figs 7.6, 7.8 and 7.9.


The mode controllability of the first and second dampers at the locations a
and b are obtained by entering the appropriate spring coefficients into (3.5),


κ
λ1


k


aM1
− k


1 − a( )M2
k


a
+ k


1 − a( )


;   
κ
λ1


k


bM1
− k


1 − b( )M2
k


b
+ k


1 − b( )


;


The value a=0.4 gives a mode controllability of 0.5 κ/λ1. Two locations of
the second damper are used; b=0.5 and b=0.99. The mode controllability is
then 0.375 κ/λ1 and -0.2375 κ/λ1 respectively.


The root locus method is not applicable as the dependence on two
parameters is to be studied. Instead the real part of inter-area mode
eigenvalues is plotted as a function of the two gains as in Fig. 8.3.
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Fig. 8.3 Real part of the inter-area mode eigenvalues as the gains are varied between
0 and 10. The parameter a is 0.4, while b takes the values 0.5 (left) and 0.99
(right). '*' indicates the point of maximum damping.


At low gains, both dampers contribute to damping and as expected the first
damper is more effective than the second. The maximum damping with
both dampers in operation is only slightly better than that of the first
damper alone.


This behaviour can be understood by introducing an electric equivalent
based on the analogies in Table 8.1 from [Peterson 1996].


Electrical System Mechanical System


Voltage u Velocity v


Current i Force F


Capacitor C Mass M


Inductance L=1/k Spring coefficient k


Conductance G Viscous damping d


Table 8.1 Equivalent variables and parameters in mechanical and electrical systems.


Application of the analogies to the equations governing the system in Fig.
8.2 gives a state space description that agrees with the circuit of Fig. 8 .4.


L1 L3 L2


C1
+
u1
–


G3 G4 C2
+
u3
–


+
u4
–


+
u2
–


Fig. 8.4 Electric equivalent to the spring-mass inter-area mode system with two
dampers.
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The conductances G3 and G4 represent the dampers. If these parameters are
zero, the electric system is a pure LC-circuit. It exhibits an undamped
oscillatory mode with the frequency,


1
LtotCtot


= 1
L1 + L2 + L3


1
C1


+ 1
C2










which is equivalent to the expression (8.1). Setting G3 to infinity yields two
LC-circuits with different resonance frequencies. This corresponds to the
mechanical system zeroes in Fig. 7.1. The dynamic behaviour of the
electric circuit thus agrees with that of the mechanical system.


For this circuit active and reactive power are well-defined: active power is
dissipated in the conductances, while reactive power quantifies the energy
oscillating between the lossless inductors and capacitors. Consequently the
oscillation is damped as its energy is dissipated as active power. This view
of oscillations and damping is also discussed for vibration damping
[Ekdahl 1996].


If only the damper G3 is considered, maximum damping is equal to
maximizing the active power P3 dissipated in the damper. This agrees with
previous experience as zero and infinite G3 both yield zero damping since
in the first case the current is zero, while in the second case the voltage is
zero. By modelling the circuit as G3 connected to a two-pole with
impedance Z, the condition for maximum P3 is conveniently formulated as
that of impedance matching,


1
G3


= Z (8.2)


If G3 is matched to the rest of the circuit and L3 is zero, it is obvious that
introducing G4 will decrease damping. If L3 is greater than zero G4 will
disturb G3 less and some active power can be dissipated in G4. This agrees
well with the results for the spring-mass system in Fig. 8.3. In this case the
mode controllability of the second damper is lower. The limited
improvement due to the second damper is therefore expected. It is obvious
that the concept of impedance matching is relevant for qualitative analysis.


Direct use of (8.2) is more complicated as the impedances of capacitances
and inductances involve a frequency. An iterative procedure is required as
the frequency is obtained from the eigenvalues which are affected by the
conductance, that was to be determined. The pseudo code below suggests
one solution:
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G=G0
while |∆G|>ε


ω = mode frequency for the current value of G
∆G=G-1/|Z(ω)|
G=G+α∆G


end


The routine was applied to the selection of G3 in Fig. 8.4 with G4=0. The
system parameters were chosen so that this is equivalent to the selection of
d3 in Fig. 8.2 with d4=0. Using the imaginary part of the inter-area mode
eigenvalue as ω and letting 10-3<G0<40, α=0.1, ε=10-4, the procedure
converges to G3=6.75 with the eigenvalues -0.738±j2.985. If instead ω is
taken as the absolute value of the inter-area mode eigenvalue the gain
G3=6.09 gives the eigenvalues -0.738±j2.861. Looking closer at Fig. 8.3
for d4=0, the gain 6.4 yields the best damping by placing the eigenvalues at
-0.743±j2.922. Despite the numerical discrepancy, the concept of
impedance matching is valuable as it provides a condition for maximum
damping that has a physical interpretation.


Measured Closest Machine Frequency


The equivalent to machine frequency in Fig. 8.1 is velocity of the masses.
In order to determine which mass is the closest to the damper location, the
point of zero mode controllability needs to be known. Using the same
values of M1, M2 and k as above it occurs if either a or b is set to 0.8. The
first damper is located at a=0.4 and F3 is thus controlled in proportion to v1
with the gain d3. For the values 0.5 and 0.99 of b, the proper feedback
signals are v1 and v2 respectively. The gain of the second damper is d4 and
its output is F4. Varying the two gains independently and plotting the real
part of the inter-area mode eigenvalues gives Fig. 8.5.
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Fig. 8.5 Real part of the inter-area mode eigenvalues as the gains are varied between
0 and 10. The parameter a is 0.4, while b takes the values 0.5 (left) and 0.99
(right). '*' indicates the point of maximum damping.
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The results for the two values of b differ substantially. When both dampers
are associated with the same machine and the first damper is tuned for
maximum damping, the second damper can not add any damping. If the
dampers instead are associated with different machines their joint operation
yields very high damping.


The structural properties of the zeroes described in Section 7.1 may explain
the effect of the second damper. An infinite d3 brings the inter-area mode
eigenvalues to the zeroes, that according to [Miu 1991] can be obtained by
fixing the actuator and the sensor. This gives constant values of both x1 and
x3 and moves the swing node to x3. A finite d3 will not fix x1 and x3, but
reduce the magnitude of their excursions. In both cases the first damper
alone can damp the motions of M1. Whereas the most active mass is M1 in
the uncontrolled system, it is M2 once M1 is damped.


Placing the second damper at b=0.5 with feedback from v1 leads to a
situation much like for the local bus frequency case, where the second
damper disturbs the first damper rather than supports it.


If instead the second damper is located at b=0.99 with feedback from v2, it
acts to damp M2. With one damper at each mass Fig. 8.5 indicates that
there is no limit for the real part of the inter-area mode eigenvalues.


8.2 Interaction and Selection of Gains


By considering the geographical extent of the electro-mechanical modes,
they can be categorized as more or less local. The fact that local modes in
different parts of the system are unlikely to interact offers a certain amount
of decoupling. Similarly, most damper locations will affect only a few
modes. This was shown in Chapter 7, where only Modes 1 and 2 were
influenced by the suggested dampers. Selection of gains in many dampers
that affect many modes can therefore often be divided into a number of
independent subproblems that involve fewer dampers and modes. When all
the possibilities of decoupling have been exhausted, the problems cannot
be further simplified and their complexity can then be categorized
according to Table 8.1.


One mode Many modes


One damper Case 1 Case 2


Many dampers Case 3 Case 4


Table 8.2 Dependencies between modes and dampers leading to four cases.
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If each damper influences only one mode and each mode is affected by
only one damper (Case 1), the selection of each gain can be treated
separately. The root locus method is well suited for the selection of one
parameter as shown in Chapter 7. There it was evident that several modes
could be affected by one gain (Case 2), and that they reached maximum
damping at different values of this gain.


The influence on many modes calls for a measure of their joint
performance, known as an objective function. Having defined an
appropriate objective function, the gain selection problem may be
submitted to an optimization routine. One example of an objective function
is the real part of the least damped eigenvalue. Another example is to use
the sum (of the real parts) of the eigenvalues computed as the trace of the
system matrix [Eliasson and Hill 1992]. The success of an optimization
routine depends critically on the choice of the objective function.


Coordinated selection of several gains (Cases 3 and 4) is considerably more
complicated than selecting a single gain. This is particularly true for Case
4. As mentioned above an optimization routine can search the parameter
space for a set of gains that optimizes the objective function. An alternative
is the method based on discretization of a part of the parameter space that
was used above. This may be applied to each mode of a larger system,
provided the modes are sufficiently few and can be kept apart. Since this is
the case for the three machine system the influence of two dampers will be
studied using this method. If the number of modes is large or if they cannot
be separated they are replaced by an objective function, which however
hides the individual modes. For larger systems such as the twenty-three
machine system, neither of these methods therefore contributes much to the
understanding of the dependencies between modes and gains.


A preferred alternative is to select the gains one at a time using root locus
plots. This gives a good insight in system behaviour, which is given
priority here. A drawback of sequential optimization or uncoordinated gain
selection is that the final set of selected gains is very unlikely to be optimal.
Fig. 8.3 on the other hand shows two minima on each side of a saddle
point. This indicates that also coordinated gain selection by unconstrained
optimization may have problems minimizing the real part of the mode.


8.3 Three Machine System


In Chapter 7 bus N8 was chosen as the location of the first damper as it
offered superior mode controllability of the 1.3 Hz mode according to
Table 3.1. The mode controllability of the 1.8 Hz mode at bus N8 was
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exceeded only by bus N6, which therefore is the natural location for the
second damper.


Local Bus Frequency


The eigenvalue sensitivities at zero gain in Table 7.1 indicate that active
power controlled by the local bus frequencies both at N6 and N8 initially
increase the damping of the two modes. Damping for nonzero gains is
shown in Fig. 8.6. It shows for each mode the real part of the electro-
mechanical eigenvalue as a function of the two damper gains d6 and d8.
Note that the dependence on the gain d8 for d6=0 is illustrated more in
detail in Fig. 7.6.
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Fig. 8.6 Real parts of the 1.3 Hz mode (left) and the 1.8 Hz mode (right) for different
gains of the dampers at bus N6 and N8 using feedback from local bus
frequency.


The damping of both modes increases with the gains as long as they are
small, but for sufficiently large gains damping decreases again. The joint
operation of the dampers has different influence on the two modes. Starting
out from optimum damping of the 1.3 Hz mode due to the damper at N8,
the damper at N6 cannot offer much improvement. This behaviour is close
to that of the spring-mass system with b=0.5 analyzed above.


Damping of the 1.8 Hz mode more symmetrically depends on the gains of
both dampers. This is different from the spring-mass case, but the inter-
area mode model is one-dimensional. The meshed nature of the three
machine system is thus qualitatively different and cannot be explained by
the simple spring-mass model. By assigning a direction to the modes the
damper locations can be related to this direction. Upwards in Fig. 2.5 is
now defined as North. Using Fig. 4.3 the direction of the 1.3 Hz mode is
North-South, while that of the 1.8 Hz mode is Northeast-Southwest. It can
now be concluded that the influence of two dampers along the swing
direction can be described by the spring-mass model. Two dampers that are
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not electrically close to each other and are located side by side in the swing
direction cannot be incorporated in the spring-mass model of Fig. 8.1.
From Fig. 8.6 it is evident that these two dampers together yield more
damping than any of them on its own.


Fig. 7.6 also shows eigenvalues of a third complex mode moving towards
the imaginary axis. For high gains, the eigenvalues of this mode may have
the smallest real part. When selecting the gains, it therefore seems
reasonable to use the real part of the least damped mode as an objective
function that should be minimized. The variation of this quantity as a
function of the gains d6 and d8 is illustrated in Fig. 8.7.
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Fig. 8.7 Real part of the least damped oscillatory mode for different gains of the
dampers at bus N6 and N8 using feedback from local bus frequency. The
point of maximum damping is indicated by '*'.


For small values of the gains, the 1.3 Hz mode is the least damped.
Somewhat larger gains make the 1.8 Hz mode the least damped, while for
large gains it is the third mode. The objective function has its minimum at
d6=0.73 and d8=1.25 p.u./(rad/s) which gives the complex eigenvalues
-1.3±j11.7, -1.4±j9.6 and -1.3±j5.8.


Measured Closest Machine Frequency


According to the methods in Section 4.4 for finding the closest machine,
S3 is closest to bus N6. Fig. 3.3 leaves little doubt about this, but to be
certain Table 8.3 may also be consulted. It contains the eigenvalue
sensitivity of the electro-mechanical eigenvalues to feedback from machine
frequency to active power at N6. Table 8.3 verifies that feedback from the
machine S3 is the only alternative with appropriate argument for both
modes.
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Machine 1.3 Hz mode 1.8 Hz mode


H1 0.509ej5° 0.098ej12°


S2 1.504e-j172° 0.966e-j4°


S3 0.909e-j170° 3.245e-j176°


Table 8.3 Eigenvalue sensitivity of the electro-mechanical eigenvalues in the second
quadrant to feedback from machine frequency to active power at bus N6.


Fig. 8.8 illustrates how the damping of the modes depend on the gains d6
and d8 of the dampers located at bus N6 and N8.
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Fig. 8.8 Real parts of the 1.3 Hz mode (left) and the 1.8 Hz mode (right) for different
gains of the dampers at bus N6 and N8 using feedback from the frequency
of S3. The point of maximum damping is indicated by '*'.


Just like for the spring-mass model with b=0.5, one measurement signal
here controls two actuators. It is therefore natural that the results are very
similar to those in Fig. 8.5 for b=0.5: provided the damper at the location
with the highest mode controllability is tuned for maximum damping, the
other damper can only reduce damping. Letting one gain be zero, damping
depends on the other gain much like in the bus frequency case. It indicates
that although not directly applicable, impedance matching may be relevant
for feedback from machine frequency. This is natural as good damping also
in this case is a balance between the magnitude of the actuator output and
the feedback signal that are increased by high and low gains respectively.


Machine frequency as feedback signal does not give rise to a third complex
mode. Fig. 8.9 shows that for small and large gains the least damped mode
is the 1.3 Hz mode, while for intermediate gains it is the 1.8 Hz mode.
Selecting the gains by minimizing the real part the least damped mode
yields the point indicated by '*' in Fig. 8.9. It occurs at d6=0.88 pu/(rad/s)
and d8=0.08 pu/(rad/s) which gives the complex eigenvalues -1.8±j9.2 and
-1.8±j7.6.
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Fig. 8.9 Real part of the least damped oscillatory mode for different gains of the
dampers at bus N6 and N8 using feedback from the frequency of S3. The
point of maximum damping is indicated by '*'.


8.4 Twenty-three Machine System


The twenty-three machine system is sufficiently large to contain both inter-
area modes such as Mode 1 and more or less local electro-mechanical
modes. Most modes will involve only a part of the system and are
consequently affected only by dampers within the corresponding area. This
is the case for Modes 2 and 3. The fact that Modes 1 and 2 are affected by
dampers both at bus N51 and at bus N63, raises the question of controller
interaction. This is studied here by departing from the cases in Section 7.4
with one damper and adding a damper at the other location. The influence
of the new damper can then be studied in a root locus plot. Together with
Section 7.4, this gives information about system behaviour along four lines
in the two-dimensional parameter space spanned by the two gains as
illustrated in Fig. 8.10. Results for the lines on the axes are presented in
Section 7.4, while the other two are explored below.


d51


d63


d51opt


d63opt


Fig. 8.10 Explored parts of the parameter space spanned by the gains d51 and d63 of
the dampers at bus N51 and bus N63. d51opt and d63opt are the optimum
gains selected in Section 7.4.
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As the first damper modifies system dynamics, sensitivities based on the
measures of mode observability and mode controllability in Chapters 3 and
4 are no longer valid. Therefore new sensitivities are computed for the
cases with one damper at optimum gain.


A single damper at bus N51 or bus N63 gives sufficient damping to Modes
1 and 2, but Mode 3 is hardly affected by dampers at these locations. A
second damper is therefore introduced at a new location in order to increase
the damping of Mode 3.


Local Bus Frequency


The root locus plots of Figs 7.8 and 7.9 indicated that suitable gains for
active power controlled by local bus frequency at bus N51 and N63, are 2.8
and 4 p.u./(rad/s) respectively. These gains bring Mode 1 to its point of
maximum damping, while Mode 2 could be even better damped by higher
gains.


Assuming that the damper at bus N51 has its gain d51 set to 2.8 p.u./(rad/s),
the eigenvalue sensitivity to feedback gains at this point is of interest. In
Table 8.4 values are given for the buses N51 and N63, but also for N1042
and N47 where the sensitivity of Mode 3 is highest.


Bus Mode 1 Mode 2 Mode 3


N1042 0.114ej161° 0.078e-j69° 0.140e-j172°


N47 0.036e-j157° 0.009ej62° 0.115e-j172°


N51 0.251ej77° 0.537ej176° 0.002ej158°


N63 0.321e-j160° 0.080ej52° 0.055ej178°


Table 8.4 Sensitivities of the selected eigenvalues in the second quadrant to local
feedback from bus frequency to active power when d51 is 2.8 p.u./(rad/s).


According to Fig. 7.8, an increase in d51 moves the eigenvalue in the
second quadrant of Mode 1 upwards, while those of Modes 2 and 3 are
further damped. This agrees well with Table 8.4, which also states that the
damper at N63 initially will improve the damping to Modes 1 and 3, while
actually decreasing that of Mode 2. This is verified by Fig. 8.11 which
shows the root locus for a variation in d63 when d51 is 2.8 p.u./(rad/s).
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Fig. 8.11 Root locus for the gain d63 that relates active power injection at bus N63
with local bus frequency. Eigenvalue locations for the values zero (+), 4.6
(x) and infinity (o) of d63 are indicated while d51 constantly is 2.8
p.u./(rad/s). The right graphs shows details of the left plot.


Before interpreting Fig. 8.11, the fourth line of Fig. 8.10 is explored by
setting d63 to its optimum value of 4 p.u./(rad/s) while d51 temporarily is
zero. This gives the eigenvalue sensitivities to feedback from local bus
frequency to active power injection. Table 8.5 contains the values both for
the buses N51, N63 and N1042 as well as for N47 where the sensitivity of
Mode 3 is high.


Bus Mode 1 Mode 2 Mode 3


N1042 0.218e-j132° 0.139ej109° 0.058e-j142°


N47 0.072e-j129° 0.058ej79° 0.119e-j163°


N51 0.407e-j144° 0.159ej108° 0.076ej150°


N63 0.413ej92° 0.346e-j172° 0.004e-j2°


Table 8.5 Sensitivities of the selected eigenvalues in the second quadrant to local
feedback from bus frequency to active power  when d63 is 4 p.u./(rad/s).


The sensitivities to a feedback gain at bus N63 agree well with the root
locus of Fig. 7.9. The same comparison but for bus N51 can be done with
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Fig. 8.12. It is the root locus obtained by varying d51 when d63 is 4
p.u./(rad/s).
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Fig. 8.12 Root locus for the gain d51 that relates active power injection at bus N51
with local bus frequency. Eigenvalue locations for the values zero (+), 3.6
(x) and infinity (o) of d51 are indicated while d63 constantly is 4 p.u./(rad/s).
The right graphs shows details of the left plot.


By combining the mode shapes in Fig. 2.9a with the swing patterns in Fig.
2.9b the geographical extent and direction of the modes can be
characterized. Mode 1 is a global North-South mode, while Mode 2 is a
more local mode where the machines at A4051 swing against those at
A4047 and A4063.


Relative to the swing direction of Mode 1, N51 and N63 are located side by
side just like the buses N6 and N8 for the 1.8 Hz mode of the three
machine system. By looking at Fig. 8.6 it is therefore expected that the
dampers at N51 and N63 together yield more damping than any of them
can provide on its own.


The locations of N51 and N63 relative to the swing direction of Mode 2 are
comparable to those of N6 and N8 for the 1.3 Hz mode of the three
machine system. Figs 8.6 and 7.8 show that in both cases (close to)
maximum damping is obtained by using only the damper at the superior
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location which here is N51. If the gain of this damper is less than required
for maximum damping, the other damper can improve damping as shown
both in Figs 8.6 and 8.11. The damper at N51 can also support the one at
N63, especially if the gain of the latter is not selected for maximum
damping of the mode.


The results in Section 7.4 for one damper alone are very good, and show
that one damper at bus N51 or N63 can add sufficient damping to Modes 1
and 2. Of the two alternatives, the damper at N63 with gain d63 set to 4
p.u./(rad/s) is chosen as it provides more damping of Mode 1. The
eigenvalue shifts that are achieved through joint operation of the two
dampers are unrealistically large. Instead of further damping Modes 1 and
2, a second damper is dedicated for damping of Mode 3.


Table 8.5 reveals that Mode 3 exhibits the greatest sensitivity to feedback
from local bus frequency to active power at bus N47. The root locus for
variations in the gain d47 is shown in Fig. 8.13.
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Fig. 8.13 Root locus for the gain d47 that relates active power injection at bus N47
with local bus frequency. Eigenvalue locations for the values zero (+), 2.8
(x) and infinity (o) of d47 are indicated while d63 constantly is 4 p.u./(rad/s).
The right graphs shows details of the left plot.
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It is evident that the damping of Modes 1 and 3 is improved by the new
damper, whereas that of Mode 2 is decreased. The value 2.8 p.u./(rad/s) of
d47 gives a reasonable compromise and is indicated in the plot.


Fig. 8.13 shows that the branches of Modes 2 and 3 start out as semi-
circles. Having come halfway after passing the suggested value of d47, they
however switch roles and follow each others' semi-circles towards the
zeroes. This strong interaction is probably due to similar mode shapes and
close eigenvalue locations as mentioned in connection with Fig. 7.12. The
individual dependence of Modes 2 and 3 on the gain d47 will not be
commented.


It is interesting to note that the poorly damped zeroes corresponding to a
rigid body mode are stable in Fig. 8.13 in contrast to those in Figs 7.8, 7.9,
8.11 and 8.12. Locating the dampers at the buses N47 and N63 better
reflects the extent of the rigid body mode and thereby seems to enable
damping of it.


Measured Closest Machine Frequency


According to Figs 7.12 and 7.13 active power injection at the buses N51 or
N63 controlled by the machine frequency of A4051_1 and A4063_1
respectively could provide good damping of Modes 1 and 2. Setting the
gain d51 of the damper at N51 to 2.4 p.u./(rad/s) gave maximum damping
of Mode 1, while Mode 2 could be further damped by a higher value. By
instead using the damper at N63 with its gain d63 set to 2.6 p.u./(rad/s) the
damping of Mode 2 was instead at its peak, while the damping of Mode 1
would benefit from a higher gain.


The same procedure as for feedback from local bus frequency will now be
followed to investigate the joint action of dampers both at bus N51 and bus
N63. With d51 at its optimum value, the eigenvalue sensitivity to active
power controlled by the frequency of the closest machine is calculated.
Table 8.6 contains values for the buses N51 and N63, but also for those
where the sensitivity of Mode 3 is highest which is N1042 and N47. At all
these buses it is simple to determine the closest machine, which are A4051,
A4063, A1042 and A4047. At plants with two units, number one is chosen.
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Bus Machine Mode 1 Mode 2 Mode 3


N1042 A1042 0.297e-j179° 0.245e-j6° 0.227e-j173°


N47 A4047_1 0.067e-j121° 0.057ej90° 0.182e-j175°


N51 A4051_1 0.945ej99° 1.179e-j108° 0.002ej170°


N63 A4063_1 0.773e-j128° 0.584ej75° 0.103ej177°


Table 8.6 Sensitivities of the selected eigenvalues in the second quadrant to active
power controlled by the frequency of the closest machine when d51 is 2.4
p.u./(rad/s).


The eigenvalue shift directions in Table 8.6 due to an increase of d51 agree
well with those in Fig. 7.12. The corresponding values for d63 are verified
by the root locus in Fig. 8.14, which is obtained by keeping d51 at 2.4
p.u./(rad/s) and varying d63.
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Fig. 8.14 Root locus for the gain d63 that relates active power injection at bus N63
with the frequency of the machine A4063_1. Eigenvalue locations for the
values zero (+), 5.6 (x) and infinity (o) of d63 are indicated while d51
constantly is 2.4 p.u./(rad/s). The right graphs shows details of the left plot.


If instead d63 is set to its optimum value of 2.6 p.u./(rad/s) and d51
temporarily is set to zero, the new eigenvalue sensitivities to active power
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controlled by the frequency of the closest machine result. The values for
the four buses N1042, N47, N51 and N63 are given in Table 8.7.


Bus Machine Mode 1 Mode 2 Mode 3


N1042 A1042 0.124e-j101° 0.201ej145° 0.110e-j153°


N47 A4047_1 0.033e-j82° 0.057ej110° 0.199e-j169°


N51 A4051_1 0.274e-j119° 0.349ej154° 0.095ej151°


N63 A4063_1 0.385ej179° 0.252e-j95° 0.005e-j10°


Table 8.7 Sensitivities of the selected eigenvalues in the second quadrant to active
power controlled by the frequency of the closest machine when d63 is 2.6
p.u./(rad/s).


Again the directions predicted for an increase of d63 agree with those seen
in Fig. 7.13. Keeping d63 at its optimum value and varying d51 yields the
root locus plot in Fig. 8.15.
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Fig. 8.15 Root locus for the gain d51 that relates active power injection at bus N51
with the frequency of the machine A4051_1. Eigenvalue locations are
indicated for the values zero (+), 4.3 (x) and infinity (o) of d51 while d63
constantly is 2.6 p.u./(rad/s). The right graphs shows details of the left plot.
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The plots in Figs 8.14 and 8.15 show that the use of two dampers can
approximately double the damping of Mode 2, while it has even more
effect on Mode 1. Whereas Fig. 7.13 also shows that Mode 1 can be fully
damped, Fig. 7.12 suggests that this applies to Mode 2 instead. This proves
the fact that in Fig. 7.12 these modes interact and have changed identities
for values of d51 greater than 2.4 p.u./(rad/s).


Since the dampers at the buses N51 and N63 are associated with different
machines, a comparison to the three machine system with two dampers is
not valid. The behaviour of Mode 1 is much the same in Figs 8.14 and 8.15
as in Figs 7.12 and 7.13. Dampers at the two locations together thus
influence Mode 1 in much the same way as they do on their own: the
eigenvalues of Mode 1 can be pushed all the way down to the real axis, but
at the same time other eigenvalues move towards a pair of unstable
complex zeroes.


Mode 2 mainly includes the machines A4047, A4051 and A4063. Placing
dampers close to two of these power plants is similar to using one damper
in the spring-mass inter-area mode system. Each of the two dampers at N51
and N63 can therefore add damping to the mode, but as the machines at
N4047 are free to move the total damping is limited.


Just like with feedback from local bus frequency, the use of a single
damper gives sufficient damping of Modes 1 and 2. The damper located at
bus N51 with feedback from the frequency at the machine A4051_1 is
chosen as it gives the best damping of the two modes. According to Table
8.6, Mode 3 is most sensitive to active power injection at bus N1042
controlled by the frequency of the local machine A1042. The root locus for
a variation of the gain d1042 is shown in Fig. 8.16
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Fig. 8.16 Root locus for the gain d1042 that relates active power injection at bus
N1042 with the frequency of the machine A1042. Eigenvalue locations are
indicated for the values zero (+), 0.36 (x) and infinity (o) of d1042 while d51
constantly is 2.4 p.u./(rad/s). The right graphs shows details of the left plot.


Varying d1042 has great effect on a mode at 5.4 rad/s. Its mode shape
shows machine A1042 swinging against the rest of the system, which
explains the great impact. Despite the superior sensitivity to d1042, Mode 3
is hardly affected at all. The damper location A1042 is therefore rejected.


The second highest sensitivity of Mode 3 in Table 8.6 is to the gain d47,
that relates active power injection at bus N47 to the frequency of the
machine A4047_1. Varying d47 when d51 is 2.4 p.u./(rad/s) gives the root
locus in Fig. 8.17.
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Fig. 8.17 Root locus for the gain d47 that relates active power injection at bus N47
with the frequency of the machine A4047_1. Eigenvalue locations are
indicated for the values zero (+), 2.6 (x) and infinity (o) of d47 while d51
constantly is 2.4 p.u./(rad/s). The right graphs shows details of the left plot.


This time the damping of Mode 3 is increased considerably. As Modes 1
and 2 are less affected, it is fairly easy to select a suitable value of d47,
which is 2.6 p.u./(rad/s). This gives all three study modes the same real part
-0.8, and actually improves damping of a faster 5.5 rad/s mode slightly.


8.5 Conclusions


The simple mechanical model again offers insight by providing
understanding that is consistent with the behaviour of the more complex
power systems. As predicted in the introduction to this chapter, a second
damper can have either positive or negative effect on the damping of a
certain mode.


For small gains, an increase in any gain will improve damping of the
electro-mechanical modes.


For larger gains, the situation is more complicated but two cases may be
distinguished. In the first case maximum damping of a mode is obtained by
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using only one damper, while in the second it requires the joint operation
of both dampers. The conditions can be summarized as below:


If the feedback signal is local bus frequency and the dampers are
located along the swing direction of the mode, the one with the highest
mode controllability alone gives the best damping. The same applies
for feedback from machine frequency if both dampers use the same
feedback signal.


When the dampers are placed side by side relative to the mode direction
and local bus frequency is used for feedback, maximum damping is
obtained by using both dampers. Similarly the use of two dampers can
be more efficient than one, if the frequencies of different machines are
used for feedback.


The negative influence on damping by a second damper can be explained
by the fact that tuning of the first damper is equivalent to impedance
matching provided the local feedback signal is employed. This is a
consequence of characterizing the oscillations as reactive power and the
damping effect as active power. Both these concepts are useful when
analyzing power system damping, and especially when using active power
as control signal.


The final damper locations in the twenty-three machine system for the bus
frequency and machine frequency feedback cases are close. The resulting
eigenvalue locations are also similar. This is natural since the points of
measurement in the two cases differ very little, as compared to the
distances involved.


The complex rigid body zeroes that were unstable in the single damper
case, are stable (Fig. 8.13) or only slightly unstable (Fig. 8.17) when
locating a damper at bus N47. Having dampers both here and at bus N51 or
N63 gives damping to a larger part of the machines and thus improves
damping even if one gain is infinite.


The eigenvalue sensitivity suggests that active power controlled by the
closest machine frequency yields greater leverage on Mode 3 at bus N1042
than at bus N47. By tracing out the root locus bus N47 is proved to be
superior. Together with the cases where modes with closely located
eigenvalues interact and change identities, this demonstrates the complex
nature of root locus branches. Studying the root locus plots, gives insight
into what is required from an optimization routine that is to perform
coordinated tuning of many dampers. Such knowledge may be useful when
formulating a suitable objective function.







152 8. Using a Second Linear Damper







Ch9.pdf


9
Simulations


… in which the effects of two linear dampers and the influence of control
signal limitations are studied through time simulations of the twenty-three
machine system.


Time simulations are often used to verify linearized models. As the
linearized models of the three and twenty-three machine systems used in
the previous chapters originate from a simulation model in EUROSTAG
such a comparison is not critically important yet interesting. In this chapter,
time simulations will demonstrate the effect of dampers in the twenty-three
machine test system. As the disturbances that are simulated are small, the
linear model should be able to describe the results. This offers a new view
of the eigenanalysis results.


Section 4.1 suggested that active loads can be switched on and off to damp
electro-mechanical oscillations. In the simulation model this behaviour
may be approximated by simply limiting the output of the linear damping
controller. While being impossible to incorporate into a linear analysis, the
consequences of limitations are conveniently studied through time
simulations.


The procedure for running a simulation in EUROSTAG consists of three
stages: preprocessing, simulation and postprocessing. During the first
stage, the model is defined by entering the components of the power
system along with their parameters and an operating point (see Fig. 2.1).
To study damping, the system needs to be excited and the appropriate
dampers should be activated at certain instants. The sequence of such
events are written into a file that is read by the simulator. Once the
preparations are done, the simulation can start, either from steady state or
from a state saved from an earlier simulation. The simulator writes the
results into two files that together with the system description files make it
possible to reproduce all variables that have been defined. Fig. 9.1 shows
the postprocessing required to view the simulation results graphically or
read them into Matlab. All graphs in this chapter are produced in Matlab.
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Fig. 9.1 Processing required to analyze results in Matlab. During simulation
EUROSTAG_S writes the results to the file case.res. In EUROSTAG_I the
results are "transposed" so that the variables appear sequentially.
EUROSTAG_A features functions for plotting, printing and exporting of
any variable to a file that can be read into Matlab.


To study the impact on one mode at a time the modes are selectively
excited. This is described and demonstrated in Section 9.1 for each of the
three study modes and serves as reference cases with no dampers involved.
Section 9.2 gives the results for dampers at the buses N47 and N63
controlled by local bus frequency, while Section 9.3 treats the case with
dampers at the buses N47 and N51 controlled by the frequency of the
machines A4047_1 and A4051_1 respectively. Section 9.4 briefly studies
the effect of limiting the controller output, both symmetrically around zero
and asymmetrically to imitate a load that is switched on and off. This is
done for a single damper placed at bus N63 and controlled by the local bus
frequency. Conclusions are given in Section 9.5.


9.1 Simulating Damping of a Single Mode


In Chapters 5 and 6 it was demonstrated for a single-mode system, that the
electro-mechanical mode could be excited by periodically varying an active
load using the eigenfrequency of the mode. The same procedure can be
used in a multi-mode system, with the difference that the excitation needs
to be done at the appropriate place to yield the correct mode shape. This
can be checked by comparing the motions of the states with the right
eigenvector. If the excitation is properly done, each state will vary
sinusoidally with magnitude and phase angle in accordance with the right
eigenvector elements as explained in Section 4.2.


In [Eliasson 1990] the machine with the greatest swing energy is excited.
The square root of the swing energy for machine i and mode j is,


Wij = Mi
−1/2 Φ j ∆ωi( ) (9.1)
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where Mi is the mass of the machine defined as in (2.21), and ∆ωi is the
rotor velocity element for machine i of the j-th right eigenvector. It is
pointed out in the discussion of [Eliasson and Hill 1992] that an equivalent
energy ranking is obtained directly from the participation factor of the rotor
velocity state of machine i in mode j,


Wij = pij (9.2)


Using (9.1) or (9.2) the machines can thus be ranked after their energy or
participation in each of the three modes. Doing this shows that the
machines with the greatest swing energy are A4051_1 and A4051_2 for
Modes 1 and 2, while A4047_1 and A4047_2 have the most swing energy
for Mode 3. The excitation using active power will therefore be done close
to these machines, at bus N51 for Modes 1 and 2 and at bus N47 for
Mode 3. Excitation for 60 s is found appropriate and is used in all cases.
Appendix D describes the damping controllers with excitation facilities.
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Fig. 9.2 Active power at bus N51 in MW (top) for excitation of Mode 1. Rotor
angular frequencies in Hz of the machines B4072, A4047_1, A4063_1 and
A4051_1 (below), where the values at one instant are indicated by circles
(o). The dashed line is an exponential decay with the time constant 11 s.
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The effect of injecting a sinusoidally varying active power with the
frequency of Mode 1 (3.09 rad/s according to Table 2.2) at bus N51 is
demonstrated in Fig. 9.2 which shows the frequencies of some
representative machines. Shortly before time reaches zero the frequency
signals are sampled, which is indicated by circles. The sign and magnitude
of each signal agrees well with the mode shape for the rotor angles in Fig.
2.9a. When the excitation ceases at time zero, the system performs the free
motion of (2.9) with only Mode 1 involved. According to (2.9), the
envelope of the free oscillation should be an exponential with a time
constant equal to the inverse of the negative real part of the eigenvalue. The
prediction is verified by the dashed lines, which illustrate an exponential
decay with the time constant 11 s = 1/0.09 s.
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Fig. 9.3 Active power at bus N51 in MW (top) for excitation of Mode 2. Rotor
angular frequencies in Hz of the machines B4072, A4047_1, A4063_1 and
A4051_1 (below), where the values at one instant are indicated by circles
(o). The dashed line is an exponential decay with the time constant 4.8 s.


Table 2.2 shows that the frequency of Mode 2 is 4.47 rad/s. Simply
changing the frequency of the excitation to this value yields the results of
Fig. 9.3. Sampling the signals shows that the mode shape of Mode 2 has
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been obtained. Damping in the simulation agrees well with the dashed
exponentials based that have a time constant of 4.8 s = 1/0.21 s.


For Mode 3, the most active machines are A4047_1 and A4047_2 and
therefore the excitation is done at bus N47. Sinusoidal excitation with the
frequency set to 4.64 rad/s yields the results of Fig. 9.4. When the
sinusoidal motions are stable, the circles indicate that the machines move
according to the mode shape in Fig. 2.9a. The time constant of the
exponentials is now 4.5 s = 1/0.22 s.
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Fig. 9.4 Active power at bus N47 in MW (top) for excitation of Mode 3. Rotor
angular frequencies in Hz of the machines B4072, A4047_1, A4063_1 and
A4051_1 (below), where the values at one instant are indicated by circles
(o). The dashed line is an exponential decay with the time constant 4.5 s.


The magnitude of the excitation is 0.1 p.u. or 10 MW for all three modes.
Due the different damping of the modes, the maximum frequency
deviations are also different in the three cases.
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9.2 Local Bus Frequency


In Chapters 7 and 8 it was shown that active power injection at the buses
N47 and N63 controlled in proportion to the local bus frequency can
increase damping of the Modes 1, 2 and 3 substantially. This can be
demonstrated by simulating the impact of the dampers on the individual
modes. The modes are excited as in Section 9.1, but at time zero when the
excitation ceases the dampers are activated. This is done by changing the
gains of the dampers from zero to the values selected in Chapter 8: 2.8
p.u./(rad/s) for the damper at bus N47 and 4 p.u./(rad/s) for the one at bus
N63.


An alternative is to let the damper by active also during excitation. This
eliminates the transient associated with damper activation that excites other
modes. The behaviour for times less than zero will, on the other hand, be
different. The decay then starts at different amplitudes in the cases with and
without dampers, which makes comparisons less straightforward.


The results for Modes 1, 2 and 3 are given in Figs 9.5-9.7, which can be
compared to the free motion as shown in Figs 9.2-9.4.


0 10
−20


0
20


N
63


0 10
−20


0
20


N
47


0 10
−0.05


0


0.05


B
40


72


0 10
−0.05


0


0.05


A
40


47
_1


0 10
−0.05


0


0.05


[s]


A
40


63
_1


0 10
−0.05


0


0.05


[s]


A
40


51
_1


Fig. 9.5 Damping of Mode 1 after 60 s of excitation at bus N51: active power
controlled at buses N63 and N47 in MW (top) controlled by local bus
frequency. Rotor angular frequencies in Hz of the machines B4072,
A4047_1, A4063_1 and A4051_1 (below).
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Fig. 9.6 Damping of Mode 2 after 60 s of excitation at bus N51: Active power
controlled at buses N63 and N47 in MW (top) controlled by local bus
frequency. Rotor angular frequencies in Hz of the machines B4072,
A4047_1, A4063_1 and A4051_1 (below).


0 10
−10


0


10


N
63


0 10
−10


0


10


N
47


0 10
−0.02


0


0.02


B
40


72


0 10
−0.02


0


0.02


A
40


47
_1


0 10
−0.02


0


0.02


[s]


A
40


63
_1


0 10
−0.02


0


0.02


[s]


A
40


51
_1


Fig. 9.7 Damping of Mode 3 after 60 s of excitation at bus N47: Active power
controlled at buses N63 and N47 in MW (top) controlled by local bus
frequency. Rotor angular frequencies in Hz of the machines B4072,
A4047_1, A4063_1 and A4051_1 (below).


As the dampers are not restricted in frequency, they transfer some swing
energy to other modes when activated. A pure exponential can therefore
not be fitted to the envelope of the damped oscillation. The eigenvalues of
the modes shown in Fig. 8.13 predict that Mode 1 is damped twice as fast
as Modes 2 and 3. This more relative measure agrees well with the
simulations.
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Note that due to the difference in magnitudes for the oscillations of the four
machines, it is difficult to make any statements about which damper is
most effective in each case.


Robustness to Changes in Network Topology


The analysis has so far treated the fault case with the double line between
the buses N4044-N4045 out of service. For the case when no dampers are
involved, the state of this line affects mainly the frequencies of the electro-
mechanical modes, as shown by the left part of Fig. 9.8. All expressions for
the eigenfrequency of the mechanical systems involve one or more spring
coefficients. As the mechanical equivalent to deleting a line is to remove a
spring, it is expected that the line influences the frequency of the electro-
mechanical modes of the power system.
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Fig. 9.8 Eigenvalues for line N4044-N4045 in (+) and out (o) of service, when
damper gains are zero (left) and take the optimum values (right). Active
power controlled by local bus frequency at buses N47 and N63.


The dampers at the buses N47 and N63 are introduced to increase the
damping of the electro-mechanical modes. The setting of their gains to 2.8
and 4 p.u./(rad/s) respectively is based on the case with the line N4044-
N4045 disconnected. The right part of Fig. 9.8, shows the eigenvalue
locations resulting from these gains both when the line is in and out of
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service. It is evident that the damping of all modes is approximately the
same in the two cases.


Changes in the network topology are fairly drastic and it can hardly be
expected that the eigenvalue locations should be unaffected. The results
given here are very limited, but indicate good robustness properties and
show that the essence of the proof in Section 4.3 is maintained also for
large gains, where it is not formally valid.


9.3 Closest Machine Frequency


Active power injection at the buses N47 and N51, controlled by the rotor
angular velocities of the machines A4047_1 and A4051_1 yield
considerable damping to the three selected modes. The effect of the
dampers on the modes can be studied through time simulations. The
procedure is the same as in the previous section: one mode at a time is
excited as in Section 9.1 and the dampers are activated when the excitation
ceases at time zero. The gains are those arrived at in Chapter 8: 2.6
p.u./(rad/s) for the damper at bus N47 and 2.4 p.u./(rad/s) for the one at bus
N51.


The effect of the dampers on Modes 1, 2 and 3 is shown in Figs 9.9-9.11,
and again the free motions of the modes in Figs 9.2-9.4 serve as reference
cases.
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Fig. 9.9 Damping of Mode 1 after 60 s of excitation at bus N51: active power at N47
and N63 in MW (top) controlled by the machine frequency of A4047_1 and
A4063_1 respectively. Rotor angular frequencies in Hz of the machines
B4072, A4047_1, A4063_1 and A4051_1 (below).
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Fig. 9.10 Damping of Mode 2 after 60 s of excitation at bus N51: active power at N47
and N63 in MW (top) controlled by the machine frequency of A4047_1 and
A4063_1 respectively. Rotor angular frequencies in Hz of the machines
B4072, A4047_1, A4063_1 and A4051_1 (below).
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Fig. 9.11 Damping of Mode 3 after 60 s of excitation at bus N47: active power at N47
and N63 in MW (top) controlled by the machine frequency of A4047_1 and
A4063_1 respectively. Rotor angular frequencies in Hz of the machines
B4072, A4047_1, A4063_1 and A4051_1 (below).


All three modes are damped in roughly the same time. This is expected as
the eigenvalues of the three modes have the same real part in Fig. 8.17. The
waveforms are similar to the bus frequency case.
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Robustness to Changes in Network Topology


The eigenvalue locations for the case with dampers engaged and the line
N4044-N4045 in and out of service are shown in the right part of Fig. 9.12.
The dampers are beneficial in both cases, but the differences due to the
state of the line are greater here than when using bus frequency as feedback
signal. The damping of Mode 1 is for example reduced by 50 % when the
line is reinserted. No general conclusions can be drawn.


−4 −2 0


0


1


2


3


4


5


6


7


8


9


10


Real


Im
ag


−4 −2 0


0


1


2


3


4


5


6


7


8


9


10


Real


Im
ag


Fig. 9.12 Eigenvalues for line N4044-N4045 in (+) and out (o) of service, when
damper gains are zero (left) and take the optimum values (right). Active
power at buses N47 and N51 controlled by the machine frequency of
A4047_1 and A4063_1 respectively.


9.4 On-off Control


In contrast to linear analysis techniques, time simulation is not restricted to
linear control laws. A nonlinear alternative of great practical value is on-off
control, which was used in Chapters 5 and 6. Simulation of controllers with
relay characteristics may prove difficult. The approximate effect of on-off
control may, however, be studied by modifying the linear controller so that
its output signal is a sequence of pulses. Limiting the controller output
gives a maximum output signal amplitude. The controller is turned off after
a certain time to imitate that the on-off controller can only damp the
oscillation down to a certain amplitude.
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On-off control requires asymmetric limitation of the controller output, and
thus gives an offset in the output signal. In order to study the effects of
limitation and offset separately, the limitation is first symmetric. Fig. 9.13
shows the damping of Mode 1 using one damper at bus N63 controlled by
local bus frequency. The controller has a gain of 4 p.u./(rad/s) and its
output is limited to ±1 MW. After five oscillation periods the damper is
disengaged.
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Fig. 9.13 Damping of Mode 1 after excitation at bus N51: Active power at bus N63
controlled by local bus frequency but limited to ± 1 MW. Frequency
deviation in Hz at bus N63 (top left) and damper output in MW (top right).
Rotor angular frequencies in Hz of the machines B4072, A4047_1,
A4063_1 and A4051_1 (below).


The effect of the limited damper is a linear decay of the oscillation. This is
very similar to the results in Chapters 5 and 6. The reduction of the control
signal magnitude leads to slower damping than with unlimited linear
control.


The offset is now added by changing the output limits to 0 and +2 MW,
which gives the results of Fig. 9.14.
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Fig. 9.14 Damping of Mode 1 after excitation at bus N51: Active power at bus N63


controlled by local bus frequency but limited to be between 0 and 2 MW.
Frequency deviation in Hz at bus N63 (top left) and damper output in MW
(top right). Rotor angular frequencies in Hz of the machines B4072,
A4047_1, A4063_1 and A4051_1 (below).


The damping effect on the oscillation is the same as before, but the offset
in the control signal excites the rigid body mode leading to a temporary
reduction in the frequency of all machines. This is handled by the turbine
governors in the system.


The simple study indicates that on-off control is efficient also in a realistic
multi-machine system. A real implementation of an on-off controller faces
two potential problems. The first one is the direct influence of the
switching on the measured signal if this is local bus frequency. This may
be solved by additional filtering that can reject the switching disturbances
or by instead using machine frequency for feedback. The second problem is
the selection of the frequency deviation at which the active load should be
switched on. Chapter 5 suggested a test to determine the minimum value of
this parameter, called ∆ωon. It is possible that this test can be used to give
one value of ∆ωon for each of the different modes. By choosing the largest
of these values limit cycles are avoided. The problem is to assure that the
final value is valid for all operating points and network configurations that
can occur.


On-off control in itself has two properties that need to be considered. One
is the possibly detrimental impact on the torsional dynamics of long
turbine-generator shafts. This needs further investigation. It is also
important to realize that the damping of the system in the linear sense is
unaltered: once the oscillation amplitude is small enough it decays as for
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the uncontrolled system. This motivates the existence of damping systems
with continuous action such as PSS or the supplementary controllers of
phase controlled power electronics such as HVDC.


9.5 Conclusions


The simulations in this chapter confirm the results arrived at through
eigenanalysis in Chapter 8. The individual modes are excited by active
power modulation with the mode frequency close to the machine that is
most active. The gains arrived at in Chapter 8 provide very good damping
of all three study modes both when using local bus frequency and machine
frequency for feedback. With the dampers engaged the envelope of the
oscillations does not decay as a pure exponential, which indicates the
presence of other modes.


Eigenvalue locations are shown for the selected damper gains with the
double line N4044-N4045 in service. It is shown that the dampers have a
beneficial effect on damping regardless if the line is in or out of service.


The output of a linear damping controller with local bus frequency input is
limited to imitate on-off control. It is shown that symmetric limitation of
the controller output prolongs the time it takes to damp an oscillation.
Asymmetric limitation gives the same damping performance but excites the
rigid body mode.







Contents.pdf


Contents


Introduction 1


1.1 Electro-Mechanical Oscillations............................................... 1
1.2 Sources of Supplementary Damping ........................................ 4
1.3 Controlling Active Loads for Damping.................................... 9
1.4 Outline of the Thesis............................................................... 10
1.5 Objectives and Contributions of the Thesis............................ 11


Modelling 13


2.1 The Modelling Procedure ....................................................... 13
2.2 Modal analysis ........................................................................ 18
2.3 Test Systems ........................................................................... 27
2.4 Mechanical Equivalents.......................................................... 40


Control Signals 47


3.1 Modelling the Controlled Load .............................................. 48
3.2 Computing Mode Controllability ........................................... 49
3.3 Controllability of Test Systems .............................................. 52


Feedback Signals 59


4.1 Feedback Signal Selection...................................................... 60
4.2 Computing Mode Observability ............................................. 60
4.3 Local Bus Frequency .............................................................. 62
4.4 Closest Machine Frequency.................................................... 72
4.5 Estimated Mode Frequency .................................................... 74
4.6 Conclusions............................................................................. 76


On-off Control of a Damper 77


5.1 Energy Function Analysis....................................................... 78
5.2 Phase Plane Analysis .............................................................. 79
5.3 Procedure for Selecting Relay Parameters ............................. 84
5.4 Conclusions............................................................................. 86







viii Contents


Field Test 87


6.1 Power System ......................................................................... 88
6.2 Signal Processing.................................................................... 89
6.3 Implementation ....................................................................... 91
6.4 Simulation Model ................................................................... 94
6.5 Experiments ............................................................................ 95
6.6 Conclusions........................................................................... 101


Using a Linear Damper 103


7.1 System Zeroes of the Spring-Mass Model ........................... 104
7.2 Multi-Modal Decomposition ................................................ 109
7.3 Three Machine System ......................................................... 113
7.4 Twenty-three Machine System ............................................. 117
7.5 Conclusions........................................................................... 127


Using a Second Linear Damper 129


8.1 Spring-Mass Inter-Area Mode System ................................. 130
8.2 Interaction and Selection of Gains........................................ 135
8.3 Three Machine System ......................................................... 136
8.4 Twenty-three Machine System ............................................. 140
8.5 Conclusions........................................................................... 150


Simulations 153


9.1 Simulating Damping of a Single Mode ................................ 154
9.2 Local Bus Frequency ............................................................ 158
9.3 Closest Machine Frequency.................................................. 161
9.4 On-off Control ...................................................................... 163
9.5 Conclusions........................................................................... 166


Conclusions 167


10.1 Summary of Results.............................................................. 167
10.2 Future Research .................................................................... 169


References 173


Appendices 179


A Single Machine System ........................................................ 179
B Three Machine System ......................................................... 181
C Twenty-three Machine System ............................................. 183
D Damping Controllers ............................................................ 185







Motto.pdf


The purpose of computing is insight, not numbers


R. W. Hamming, Numerical methods for scientists and engineers







x







References.pdf


References


The following abbreviations are used:
IEEE T-EC for IEEE Transactions on Energy Conversion
IEEE T-PAS for IEEE Transactions on Power Apparatus and Systems
IEEE T-PWRD for IEEE Transactions on Power Delivery
IEEE T-PWRS for IEEE Transactions on Power Systems


Akke, M. (1989), Power System Stabilzers in Multimachine Systems, Dept.
of Automatic Control, Lund Institute of Technology, Lund, Sweden


Akke, M. (1996), Results from field tests at Hemsjö Övre, September
24-25, (in Swedish), Sydkraft Report, PDK-9610-043, Malmö, Sweden


Akke, M. (1997), Some Control Applications in Electrical Power Systems,
PhD Thesis, Dept. of Industrial Electrical Engineering and Automation,
Lund Institute of Technology, Lund, Sweden


Anderson, P. M. and A. A. Fouad (1993), Power System Control and
Stability, IEEE


Arnborg, S. (1997), Emergency Control of Power Systems in Voltage
Unstable Conditions, PhD Thesis, Royal Insitute of Technology,
Stockholm, Sweden


Bian, J., D. G. Ramey, R. J. Nelson and A. Edris (1995), "A study of
equipment sizes and constraints for a unified power flow controller,"
Proceedings of the IEEE Power Engineering Society Transmission and
Distribution Conference, Los Angeles, CA, USA, pp 332-338


Chen, X. R., N. C. Pahalawaththa, U. D. Annakkage and C. S. Kumble
(1995), "Design of TCSC Controller to Damp Power Swings by Using
Eigenvalue Analysis Method," Paper SPT PS 09-03-0399 presented at
IEEE/KTH Stockholm Power Tech Conference, Stockholm, Sweden, pp
268-273


CIGRÉ (1995), CIGRÉ TF 38-02-08, Long Term Dynamics Phase II, Final
Report, March 1995







174 References


CIGRÉ (1996), CIGRÉ Technical Brochure on Control of Power System
Oscillations, Final Report, July 1996


Ekdahl, I. (1996), Personal communication, Dept. of Industrial Electrical
Engineering and Automation, Lund Institute of Technology, Lund, Sweden


Elgerd, O. (1971), Electric Energy Systems Theory: An Introduction,
McGraw-Hill


Eliasson, B. (1990), Damping of Power Oscillations in Large Power
Systems, PhD Thesis, Dept. of Automatic Control, Lund Institute of
Technology, Lund, Sweden


Eliasson, B. and D. J. Hill (1992), "Damping Structure and Sensitivity in
the Nordel Power System," IEEE T-PWRS, Vol. 7, No. 1, pp 97-105


EUROSTAG user's manual - Release 2.3, Tractebel - Electricité de France,
April 1995


Gronquist, J. F., W. A. Sethares, F. L. Alvarado and R. H. Lasseter (1995),
"Power Oscillation Damping Control Strategies for FACTS Devices Using
Locally Measurable Quantities," IEEE T-PWRS, Vol. 10, No. 3, 1598-1605


Gronquist, J., W. Sethares, F. Alvarado and R. Lasseter (1996), "Animated
Vectors for Visualization of Power System Phenomena," IEEE T-PWRS,
Vol. 11, No. 1, 267-273


Hauer, J. F. and H. J. Boenig (1987), "Control Aspects of the Tacoma
Superconducting Magnetic Energy Storage Project," IEEE T-PWRS, Vol.
2, No. 2, pp 443-450


Heniche, A., H. Bourlès and M. P. Houry (1995), "A Desensitized
Controller for Voltage Regulation of Power Systems," IEEE T-PWRS, Vol.
10, No. 3, pp 1461-1466


Hingorani, N. G. (1988), "High Power Electronics and Flexible AC
Transmission System," Speech given at 50 th Annual Meeting of the
American Power Conference, April 19, 1988, Chicago, USA, printed in
IEEE Power Engineering Review, July 1988, pp 3-4


Hingorani, N. G. (1993), "Flexible ac transmission," IEEE Spectrum, April
1993, pp 40-45


Hiskens, I. A. and D. J. Hill (1992), "Incorporation of SVCs into Energy
Function Methods," IEEE T-PWRS, Vol. 7, No. 1, pp 133-140







References 175


Hiskens, I. A. and J. V. Milanovic (1995), Load modelling in studies of
power system damping, IEEE T-PWRS, Vol. 10, No. 4, pp 1781-1788


Iravani, M. R., P. L. Dandeno, K. H. Nguyen, D. Zhu and D. Maratukulam
(1994), "Applications of Static Phase Shifter in Power Systems," IEEE T-
PWRD, Vol. 9, No. 3, pp 1600-1608


Jones, L. (1996), Utilizing HVDC to Enhance Small-Signal Stability in
Power Systems – Analysis and Design of Robust Power Modulation
Controls for Damping, Thesis, Royal Insitute of Technology, Stockholm,
Sweden


Jönsson, H-Å (1996), Personal communication, ABB Power Systems AB,
Västerås, Sweden


Karlsson, D. and D. J. Hill (1994), "Modelling and Identification of
Nonlinear Dynamic Loads in Power Systems," IEEE T-PWRS, Vol. 9,
No. 1, pp 157-166


Kearsley, R. (1987), "Restoration in Sweden and Experience Gained from
the Blackout of 1983," IEEE T-PWRS, Vol. No. 2, pp 422-428


Kimbark, E. W. (1948), Power System Stability, Vol. 1, Wiley, New York


Klein, M., G. J. Rogers, S. Moorty and P. Kundur (1992), "Analytical
Investigation of Factors Influencing Power System Stabilizers
Performance," IEEE T-EC, Vol. 7, No. 3, pp 382-390


Kundur, P. (1994) Power System Stability and Control, McGraw-Hill


LabVIEW® 2 User Manual, National Instruments Corp., Austin, TX, USA,
1991


Larsen, E. V. and D. A. Swann (1981), "Applying Power System
Stabilizers, Parts I-III," IEEE T-PAS, Vol. 100, No. 6, pp 3017-3046


Larsen, E., N. Miller, S. Nilsson and S. Lindgren (1992), "Benefits of
GTO-based Compensation for Electric Utility Applications," IEEE T-
PWRD, Vol. 7, No. 4, pp 2056-2064


Larsen, E. V. and A. T. Hill (1993), "Dynamic braking resistor system,"
US Patent no. 5,198,745


Larsen, E. V., J. J. Sanchez-Gasca and J. H. Chow (1995), "Concepts for
Design of FACTS Controllers to Damp Power Swings," IEEE T-PWRS,
Vol. 10, No. 2, pp 948-956







176 References


Lerch, E., D. Povh and L. Xu (1991), "Advanced SVC Control for
Damping of Power System Oscillations," IEEE T-PWRS, Vol. 6, No. 2, pp
524-535


von Löwis, J. (1996), Stabilitätssicherung der Energieübertragung in
Mehrmaschinensystemen durch Lastregelung, Diplomarbeit, Faculty of
Electrical Engineering, Technical University of Dresden


Maciejowski, J. M. (1989), Multivariable Feedback Design, Addison-
Wesley


Martins, N., L. T. T. Lima and H. J. C. P. Pinto (1996), "Computing
Dominant Poles of Power System Transfer Functions," IEEE T-PWRS,
Vol. 11, No. 1, pp 162-170


Matlab® – User's Guide, The MathWorks, Inc., Natick, MA, USA, 1992


de Mello, F. P. and C. Concordia (1969), "Concepts of Synchronous
Machine Stability as Affected by Excitation Control," IEEE T-PAS, Vol.
88, No. 4, pp 316-329


Miu, D. K. (1991), "Physical Interpretation of Transfer Function Zeros for
Simple Control Systems With Mechanical Flexibilities," Journal of
Dynamic Systems, Measurement, and Control, Vol. 113, September, pp
419-424


Moore, P. J., R. D. Carranza and A. T. Johns (1994), "A new numeric
technique for high-speed evaluation of power system frequency," IEE
Proc.-Gener. Transm. Distrib., Vol. 141, No. 5, pp 529-536


NB-MIO-16 User Manual, National Instruments Corp., Austin, TX, USA,
1992


NB-DSP2300/2305 User Manual, National Instruments Corp., Austin, TX,
USA, 1992


Noroozian, M. and G. Andersson (1994), "Damping of Power System
Oscillations by use of Controllable Components," IEEE T-PWRD, Vol. 9,
No. 4, pp 2046-2054


Othman, H., R. Vedam, J. Finney and L. Ängquist (1995), "Robust
Supplementary Damping Controllers," Paper SPT PS 08-05-0370 presented
at IEEE/KTH Stockholm Power Tech Conference, Stockholm, Sweden, pp
244-249







References 177


Pérez-Arriaga, I. J., G. C. Verghese and F. C. Schweppe (1982), "Selective
Modal Analysis with Applications to Electric Power Systems, Part I:
Heuristic Introduction," IEEE T-PAS, Vol. 101, No. 9, pp 3117-3125


Peterson, B. (1996), Induction Machine Speed Estimation - Observations
on Observers, PhD thesis, Dept. of Industrial Electrical Engineering and
Automation, Lund Institute of Technology, Lund, Sweden


Phadke, A. G., J. S. Thorp and M. G. Adamiak (1983), "A New
Measurement Technique for Tracking Voltage Phasors, Local System
Frequency, and Rate of Change of Frequency," IEEE T-PAS, Vol. 102,
No. 5, pp 1025-1038


Porter, B. and R. Crossley (1972), Modal Control – Theory and
Applications, Taylor & Francis


Ramaswamy, G. N., G. C. Verghese, L. Rouco, C. Vialas and C. L.
DeMarco (1995), "Synchrony, Aggregation and Multi-Area
Eigenanalysis," IEEE T-PWRS, Vol. 10, No. 4, pp 1986-1993


Reinschke, K. J. (1994), "Graph-Theoretic Approach to Symbolic Analysis
of Linear Descriptor Systems," in Linear Algebra and its Applications 197,
198, pp 217-244, Elsevier Science, New York


Samuelsson, O., B. Eliasson and G. Olsson (1995), "Power Oscillation
Damping with Controlled Active Loads," Paper SPT PS 09-04-0620
presented at IEEE/KTH Stockholm Power Tech Conference, Stockholm,
Sweden, pp 274-279


Sauer, P. W., D. J. LaGesse, S. Ahmed-Zaid and M. A. Pai (1987),
"Reduced Order Modeling of Interconnected Multimachine Power Systems
using Time-Scale Decomposition," IEEE T-PWRS, Vol. 2, No. 2,
pp 310-320


Shelton, M. L., W. A. Mittelstadt, P. F. Winklenon and W. L. Bellerby
(1975), "Bonneville Power Administration 1400 MW Braking Resistor,"
IEEE T-PAS, Vol. 94, No. 3, pp. 602-611


Simulink® – User's Guide, The MathWorks, Inc., Natick, MA, USA, 1995


Smed, T. and G. Andersson (1993), "Utilising HVDC to Damp Power
Oscillations," IEEE T-PWRD, Vol. 8, No. 2, pp 620-627


Smed, T. (1993), "Feasible Eigenvalue Sensitivity for Large Power
Systems," IEEE T-PWRS, Vol. 8, No. 2, pp 555-563







178 References


Stanton, S. E. and W. P. Dykas (1989), "Analysis of a Local Transient
Control Action by Partial Energy Functions," IEEE T-PWRS, Vol. 4, No. 3,
pp 996-1002


Timoshenko, S. (1937), Vibration Problems in Engineering, D. Van
Nostrand Company, Inc., New York


Åström, K. J. and B. Wittenmark (1990), Computer Controlled Systems:
Theory and Design, Prentice-Hall, Englewood Cliffs, NJ


Ängquist, L, B. Lundin and J. Samuelsson (1993), " Power Oscillation
Damping using Controlled Reactive Power Compensation - a Comparison
Between Series and Shunt Approaches," IEEE T-PWRS, Vol. 8, No. 2,
pp 687-700


Ölwegård, Å., K. Walve, G. Wåglund, H. Frank and S. Torseng (1981),
"Improvement of Transmission Capacity by Thyristor Controlled Reactive
Power," IEEE T-PAS, Vol. 100, No. 8, pp 3930-3939







Abstract.pdf


Abstract


Environmental and economical aspects make it difficult to build new
power lines and to reinforce existing ones. The continued growth in
demand for electric power must therefore to a great extent be met by
increased loading of available lines. A consequence is that power system
damping is reduced, leading to a risk of poorly damped power oscillations
between the generators. This thesis proposes the use of controlled active
loads to increase damping of such electro-mechanical oscillations. The
focus is on structural aspects of controller interaction and of sensor and
actuator placement.


On-off control based on machine frequency in a single machine infinite bus
system is analysed using energy function analysis and phase plane plots.
An on-off controller with estimated machine frequency as input has been
implemented. At a field test it damped oscillations of a 0.9 MW hydro
power generator by controlling a 20 kW load.


The linear analysis uses two power system models with three and twenty-
three machines respectively. Each damper has active power as output and
local bus frequency or machine frequency as input. The power system
simulator EUROSTAG is used both for generation of the linearized models
and for time simulations.


Measures of active power mode controllability and phase angle mode
observability are obtained from the eigenvectors of the differential-
algebraic models. The geographical variation in the network of these
quantities is illustrated using the resemblance to bending modes of flexible
mechanical structures. Eigenvalue sensitivities are used to determine
suitable damper locations.


A spring-mass equivalent to an inter-area mode provides analytical
expressions, that together with the concept of impedance matching explain
the structural behaviour of the power systems. For large gains this is
investigated using root locus plots. The effect of using two dampers is
studied. For the three machine system this is done for all combinations of
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the two gains in a certain range. In the twenty-three machine case one gain
takes only two values as the other is varied.
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