
Aspects on ADM1 Implementation within the BSM2 Framework

 1

Aspects on ADM1 Implementation within the
BSM2 Framework

Rosen, C. and Jeppsson, U.

Summary

This document presents detailed information regarding numerous implementation issues with respect to the
Anaerobic Digestion Model No 1 (ADM1). A number of enhancements and modifications to the original ADM1
are suggested based on the extensive experiences gained when including the ADM1 into the framework of the
IWA Benchmark Simulation Model No 2 (BSM2). However, the report is also valid when using the ADM1 as a
stand-alone model. It summarizes all necessary information – some of which is not easily accessible in the
ADM1 STR – needed to implement the model. Examples and computer code for Matlab/Simulink is also
provided. Aspects related to ODE (ordinary differential equation) vs DAE (differential algebraic equation)
implementations, system stiffness and varying time constants, mass balances, acid-base equilibrium and
algebraic solvers for pH and other troublesome state variables, numerical solvers and simulation time are
discussed. A main conclusion is that if implemented properly, the enhanced ADM1 will produce high-quality
results also in dynamic plant-wide simulations including noise, discrete sub-systems, etc. without imposing any
major restrictions due to extensive computational efforts.

Copyright © 2008 Christian Rosen and Ulf Jeppsson

Aspects on ADM1 Implementation within the BSM2 Framework

 2

Table of Contents

1. INTRODUCTION 3
2. THE IWA BENCHMARK SIMULATION MODELS 3
2.1. BSM1 3
2.2. BSM2 4
3. ADM1 ODE IMPLEMENTATION 4
3.1. Introduction 4
3.2. Elemental balances 4
3.3. Acid-base equations 6
3.4. Temperature dependencies 6
3.5. Model equations 7
3.5.1. Process rates 7
3.5.2. Process inhibition 8
3.5.3. Water phase equations 10
3.5.4. Gas phase equations 14
4. ADM1 DAE IMPLEMENTATION 15
4.1. Motivation 15
4.1.1. Dynamic inputs 15
4.1.2. Control actions 15
4.1.3. Noise sources 15
4.1.4. Simulating stiff systems in Matlab/Simulink 15
4.1.5. ODE and DAE systems 16
4.1.6. Time constants in ADM1 16
4.2. DAE equations 16
4.2.1. pH solver 16
4.2.2. Sh2 solver 17
5. COMPARISON BETWEEN ODE AND DAE
IMPLEMENTATIONS

17

5.1. Introduction 17
5.2. Steady-state comparison 17
5.3. Dynamic comparison 17
6. ADM1 BENCHMARK MODEL PARAMETERS 18
6.1. Stoichiometric parameter values 18
6.2. Biochemical parameter values 19
6.3. Physico-chemical parameter values 20
6.4. Physical parameter values used in BSM2 21
7. ADM1 BENCHMARK MODEL STEADY-STATE RESULTS 21
8. SIMULATION EFFICIENCY ANALYSIS 23
8.1. Steady state simulations 23
8.2. Transient behaviour 23
8.3. Simulation speed 23
9. REFERENCES 24
APPENDICES 25
Appendix 1. Code for ADM1 DAE implementation in Matlab/Simulink 25
Appendix 1.1. C-file for pH-solver 25
Appendix 1.2. C-file for Sh2-solver 30
Appendix 2. Petersen matrix representation of original ADM1 36

Aspects on ADM1 Implementation within the BSM2 Framework

 3

1. INTRODUCTION
This report describes the development of the Lund university implementation of the Anaerobic Digester Model
No 1 (ADM1). The aim of the report is to give an insight and rationale for the various changes and extensions
made to the original model as reported in Batstone et al. (2002). Since the ADM1 was developed for general
modelling of anaerobic digestion, in contrast to for instance the ASM models, which were specifically developed
for wastewater treatment, Batstone et al. (2002) leave some choices to the model implementor and this report
will discuss how these choices were made in order to make this specific implementation as suitable for
wastewater treatment sludge digestion as possible. The implementation was initiated by the inclusion of the
sludge treatment into the IWA Benchmark Simulation Model (BSM) to form a plant-wide or "within-the-fence"
model, i.e. BSM2.

2. THE IWA BENCHMARK SIMULATION MODELS

2.1. BSM1
The original COST benchmark system was defined as “a protocol to obtain a measure of performance of control
strategies for activated sludge plants based on numerical, realistic simulations of the controlled plant” (Copp,
2002). It was decided that the official plant layout would be aimed at carbon and nitrogen removal in a series of
activated sludge reactors followed by a secondary settling tank, as this is perhaps the most common layout for
full-scale WWT plants today. The selected model description for the biological processes was the recognised
Activated Sludge Model no. 1, ASM1 (Henze et al., 2000), and the chosen settler model was a one-dimensional
10-layer model together with the double-exponential settling velocity model (Takacs et al., 1991).

To allow for uniform testing and evaluation three dynamic input data files have been developed, each
representing different weather conditions (dry, rain and storm events) with realistic variations of the influent flow
rate and composition. These files can be downloaded from the BSM TG website and have been widely used by
various research groups also for other purposes than actual benchmarking. To represent a true challenge for on-
line control strategies, the simulated plant is a high-loaded plant with significant influent variations.

In order to apply different control strategies a number of control handles (i.e. actuators) and measurement signals
(i.e. sensors) must be available. A high degree of flexibility is required so that the implementation and evaluation
of an innovative strategy is not limited. The default benchmark control strategy only uses two measurement
signals (dissolved oxygen and nitrate concentrations) and two control handles (air flow rate and internal
recirculation flow rate). However, the benchmark simulation model allows for approximately 30 different control
handles (different types of step-feed and step-recycling, external carbon source addition, etc.) and a wide variety
of sensors. At this stage of development, all actuators are assumed to behave ideally whereas the sensors are
divided into different classes depending on their characteristics (delay, noise, detection limit, etc.).
Consequently, just about every conceivable real-time control strategy for activated sludge systems can be
implemented within the framework of the benchmark.

A general set of criteria has been defined within the benchmark description to assess the overall performance of
the applied control strategy. Two system performance levels exist: (1) process performance and (2) control loop
performance. The first level of assessment quantifies the effect of the control strategy on the plant in terms of an
effluent quality index, effluent violations (related to defined limits for the plant) and operational costs (energy for
pumping, aeration, etc. as well as sludge production). The second level of assessment quantifies the effect of the
control strategy on controller performance by means of different statistical criteria on the controlled and
manipulated variables. This more detailed analysis makes it possible to estimate the effect of a control strategy in
terms of wear and tear of actuators, controller robustness, disturbance attenuation, etc.

All details of the current benchmark are available at the IWA TG website and also as a publication (Copp, 2002).
A substantial effort has gone into verifying the steady state and dynamic output data included in the description.
Cross-platform checking of the benchmark has successfully demonstrated its use on a number of commercially
available simulation software tools. The benchmark manual (Copp, 2002) summarises the various tested
implementations with helpful hints for new “benchmarkers”. The complete manual can also be downloaded from

Aspects on ADM1 Implementation within the BSM2 Framework

 4

the website. So far, results have been verified using BioWin™, EFOR™, GPS-X™,
MATLAB™/SIMULINK™, SIMBA®, STOAT™, WEST®, JASS and FORTRAN code.

2.2. BSM2
Although a valuable tool, the basic BSM1 does not allow for evaluation of control strategies on a plant-wide
basis. BSM1 includes only an activated sludge system and a secondary clarifier. Consequently, only local control
strategies can be evaluated. During the last decade the importance of integrated and plant-wide control has been
stressed by the research community and the wastewater industry is starting to realise the benefits of such an
approach. A WWTP should be considered as a unit, where primary and secondary clarification units, activated
sludge reactors, anaerobic digesters, thickeners, dewatering systems, etc. are linked together and need to be
operated and controlled not only on a local level as individual processes but by supervisory systems taking into
account all the interactions between the processes. Otherwise, sub-optimisation will be an unavoidable outcome
leading to reduced effluent quality and/or higher operational costs.

It is the intent of the proposed extended benchmark system, BSM2, to take the issues stated above into account.
Consequently, wastewater pre-treatment and the sludge train of the WWTP are included in the BSM2. To allow
for more thorough evaluation and additional control handles operating on longer time-scales, the benchmark
evaluation period is extended to one year (compared to one week in BSM1). The slow dynamics of anaerobic
digestion processes also necessitates a prolonged evaluation period. With this extended evaluation period, it is
reasonable to include seasonal effects on the WWTP in terms of temperature variations. The data files describing
the BSM1 influent wastewater (dry, storm and rain weather data) have been used extensively by researchers.
However, for the extended benchmark system a phenomenological mathematical model has been developed for
raw wastewater and storm water generation, including urban drainage and sewer system effects (Gernaey et al.,
2005; 2006). Additionally, intermittent loads reaching the plant by other means of transportation (e.g. trucks)
may be included. A more detailed description of the BSM2 is given in Jeppsson et al. (2006; 2007).

3. ADM1 ODE IMPLEMENTATION
In this section, the ordinary differential equation (ODE) model implementation of the ADM1 in BSM2 is
presented.

3.1. Introduction
It should be noted that the issues discussed in this report are sometimes referred to as Matlab/Simulink issues but
it is the Matlab/Simulink model implementation that was later used as the blueprint for the consequent
implementations of the ADM1 on the other BSM2 platforms (WEST, SIMBA, GPS-X and Fortran). The ADM1
implementation in Matlab/Simulink (BSM2) deviates somewhat from the model description in Batstone et al.
(2002). There are mainly three reasons for this. Firstly, the ADM1 is implemented so that it is consistent with the
full BSM2. Secondly, the computational requirements must be regarded. Thirdly, no explicit values are given in
Batstone et al. (2002) with regard to carbon and nitrogen contents of some state variables. As the BSM Task
Group (TG) had access to the “official” ADM1 implementation in Aquasim, which was developed and used by
the ADM TG during their development of the model, the unknown parameter values were first chosen in
accordance with the suggestions given there.

3.2. Elemental balances
To maintain complete elemental balances for all model components (COD, N, etc.) is a fundamental issue of any
model. ASM1 only assures mass balances on a COD basis (as not all nitrogen components are included) whereas
ASM2d maintains balances of COD, N, P and charge. ASM3 adds theoretical oxygen demand as a conservation
variable. Based on Batstone et al. (2002), a few comments are required to avoid problems for anybody
implementing the model.

The ADM1 includes a process referred to as disintegration, where a composite material (Xc) is transformed into
various compounds (SI, Xch, Xpr, Xli and XI), see Appendix 2 for the complete ADM1 Petersen matrix. Assuming
one COD mass unit of Xc completely disintegrating will produce:

fsI,xc·SI + fxI,xc·XI + fch,xc·Xch + fpr,xc·Xpr + fli,xc·Xli = 0.1·SI + 0.25·XI + 0.2·Xch + 0.2·Xpr + 0.25·Xli

Aspects on ADM1 Implementation within the BSM2 Framework

 5

A COD balance exists as long as the sum of all fi,xc = 1. However, the proposed nitrogen content of Xc (Nxc) is
0.002 kmole N.kg-1 COD. If we instead calculate the nitrogen content of the disintegration products (kmole
N.kg-1 COD) using parameter values from Batstone et al. (2002), we get:

NI·0.1(SI) + NI·0.25(XI) + Nch·0.2(Xch) + Naa·0.2(Xpr) + Nli·0.25(Xli) = 0.0002 + 0.0005 + 0.0014 = 0.0021

(note that carbohydrates and lipids contain no nitrogen). In Table 1 (Section 6.1) the values of all parameters are
listed. This means that for every kg of COD that disintegrates, 0.1 mole of N is created (5% more than was
originally there). Obviously, the nitrogen contents and yields from composites are highly variable and may need
adjustment for every specific case study but the “default” parameter values should naturally close the elemental
balances. Therefore, we suggest new values for fXI,xc = 0.2 and fli,xc = 0.3. There are numerous ways by which the
balance may be closed but the above way was considered a simple and reasonable solution and based on
discussions with the ADM TG. For the specific BSM2 implementation we have also modified NI to 0.06/14 ≈
0.00429 kmole N.kg-1 COD to be consistent with the ASM1 model, where inert particulate organic material is
assumed to have a nitrogen content of 6 g N.g-1 COD. Because of the latter modification Nxc is set to 0.0376/14 ≈
0.00269 kmole N.kg-1 COD to maintain the nitrogen balance.

The ADM1 contains the state variables inorganic carbon and inorganic nitrogen. These may act as source or sink
terms to close mass balances. However, the provided stoichiometric matrix is not defined to take this into
account. Let us take an example: decay of biomass (processes no 13-19) produces an equal amount of
composites on a COD basis. However, the carbon content may certainly vary from biomass to composites
resulting from decay. And what happens to the excess nitrogen within the biomass? It is suggested in Batstone et
al. (2002) that the nitrogen content of bacteria (Nbac) is 0.00625 kmole N.kg-1 COD, which is three times higher
than the suggested value for Nxc. In such a case, it is logical to add a stoichiometric term (Nbac – Nxc) into the
Petersen matrix, which will keep track of the fate of the excess nitrogen. The same principle holds for carbon
during biomass decay, i.e. (Cbac – Cxc). A similar modification of the stoichiometric matrix should be done for the
inorganic carbon for the processes “uptake of LCFA, valerate and butyrate” as well as for the disintegration and
hydrolysis processes (both carbon and nitrogen).

The recommendation is to include stoichiometric relationships for all 19 processes regarding inorganic carbon
and inorganic nitrogen. In principle this means adding stoichiometry expressions into all empty cells of the
Petersen matrix for variables 10 and 11 (see Section 3.5.3 and Appendix 2). Basically all the required
information are already given by Batstone et al. (2002). In many cases the expressions will be zero (depending
on the selected values of the stoichiometric parameters) but there will be a guarantee that the mass balances are
closed and the conservation law fulfilled at all times for COD, carbon and nitrogen. Moreover, such an approach
makes model verification (finding coding errors in an implementation) much easier. This modification represents
a change to the original ADM1.

Using the proposed values of carbon content in the original ADM1 implementation it is stated that the carbon
content of Xc is equal to 0.03 kmole C.kg-1 COD. However, if we examine the carbon contents of the products
arising from disintegration of composite material (based on the new fractionation parameters defined above, i.e.
fXI,xc = 0.2 and fli,xc = 0.3) we get:

0.03·0.1(SI) + 0.03·0.2(XI) + 0.0313·0.2(Xch) + 0.03·0.2(Xpr) + 0.022·0.3(Xli) = 0.02786 kmole C.kg-1 COD

The parameter values indicating the carbon content of the different COD fractions are described in Table 1
(Section 6.1). If the original fractionation of composite material is used (i.e. fXI,xc = 0.25 and fli,xc = 0.25) we
instead get a carbon content of the disintegrated products equal to 0.02826 kmole C.kg-1 COD. In both cases, it is
obvious that a significant amount of carbon “disappears” as a result of disintegration (6-7%). If the model is
updated by adding the stoichiometric relationships to guarantee mass balances of carbon and nitrogen (described
above) this disappearing carbon will end up as inorganic carbon and eventually it with lead to production of
carbon dioxide in the gas phase. If the model is not updated as discussed above then 6-7% of the carbon content
of composite material will simply be removed and the carbon mass balance will not hold. Moreover, as this extra
carbon eventually ends up as carbon dioxide in the gas phase the original ADM1 model shows a tendency to
produce a somewhat high percentage of CO2 (32-35%) and a somewhat low percentage of CH4 (55-58%) in the
produced gas using a realistic sludge input. Note that the mass of produced CH4 is still reasonable as this carbon
unbalance leads to higher gas flow rates due to excess CO2.

To avoid the above problem (i.e. to achieve a realistic percentage of CH4 in the gas and a realistic gas flow rate)
it is suggested to use a value of 0.02786 kmole C.kg-1 COD to describe the carbon content of composite material

Aspects on ADM1 Implementation within the BSM2 Framework

 6

in the benchmark implementation (BSM2). For reasonable sludge inputs this modification will normally lead to a
production of 60-65% methane in the gas phase. If different parameter values are chosen the above principle
should be used to calculate a correct value of the carbon content of composite material.

3.3. Acid-base equations
The acid-base equilibrium equations play an important role in ADM1 (e.g. for pH calculations). For persons
primarily familiar with AS models these equations may create a problem as they do not normally appear in those.
Moreover, Batstone et al. (2002) focuses more on how the implementation should be done by implicit algebraic
equations and is not completely clear on the ODE implementation (see Sub-section 4.1.5 for a short definition of
ODE vs DAE models). The general model matrix describes the transformations of valerate (Sva,total), butyrate,
propionate, acetate, inorganic carbon and inorganic nitrogen. However, all these substances are made up by acid-
base pairs (e.g. Sva,total = Sva– + Shva). It is suggested in Batstone et al. (2002) (see Table B.4 of the ADM1 STR)
that when using ODEs, the equations are defined for each acid and base, respectively. Based on our experiences
it is more advantageous to implement the ODEs based on the total and one of the acid-base components instead.
The remaining part can always be calculated as the total minus the calculated part. This approach actually makes
the model more understandable also in other respects and due to numerical issues (we are subtracting very small
and similar sized numbers) the error of calculated outputs are much closer to the solution a differential-algebraic
equation (DAE) set-up would provide (when using a numerical solver with the same tolerance to integrate the
ODEs). Using valerate as an example, the process rate (A4) in Batstone et al. (2002) is:

KA,Bva (Sva– SH+
– Ka,va Shva)

and herein we replace Shva by Sva,total – Sva– and get

KA,Bva (Sva– (Ka,va + SH+) – Ka,va Sva)

and, consequently, change the stoichiometry since Sva is not affected when the equilibrium of Sva– is changing. If
using the suggested implicit solver to calculate the pH (or SH+) at every integration step (see below) then the
above problem will no longer be an issue.

The choice of an ODE or DAE system for modelling the pH should not affect the overall results of the model.
The DAE can be said to be a approximation of the ODE since, naturally, the pH dynamics are not instantaneous.
However, it is very common to model the dynamics as a DAE system in biochemical/chemical engineering.
Thus, we need to find the rate coefficients kA,Bi (where index i indicates any acid-base, i.e. valerate, butyrate,
propionate, acetate, inorganic carbon and inorganic nitrogen) in such a way that the ODE produces the same
results as the DAE. In Batstone et al. (2002), it is recommended that the coefficients should be chosen so that
they are at least one order of magnitude faster (larger) than the fastest time constant of the remaining system and
the value 1.108 M–1.d–1

is recommended. However, this is not sufficient. For the ODE to yield identical results,
the rate coefficients need to be larger and a value of 1.1010 M–1.d–1

is more appropriate.

3.4. Temperature dependencies
In order to better allow for reasonable results for different temperatures within the digester, the benchmark
ADM1 implementation uses the complete information as stated in the ADM1 STR with regard to temperature
dependency of several physico-chemical parameters (see the Table 3 in Section 6.3 for physico-chemical
parameters). This means that a model user can work with different temperatures when investigation the system
without having to recalculate these parameters. The parameters that are now considered to be functions of
temperature are:

Kw, Ka,co2, Ka,IN, KH,co2, KH,ch4, KH,h2 and pgas,h2o (i.e. water vapour saturation pressure)

The Ka values for the organic acids are not assumed to vary within the selected temperature range (0 - 60 °C) and
are assumed to be constants (see also Batstone et al. (2002), p. 39). For an even better temperature dependency
of the AD model many of the biochemical parameter values would also need to be described as functions of
temperature. However, such a modification falls outside the scope of the work of BSM TG.

Aspects on ADM1 Implementation within the BSM2 Framework

 7

3.5. Model equations
In the sub-sections below all the required equations for a full ODE implementation of ADM1 are given.

3.5.1. Process rates
The biochemical process rates are defined below.

Disintegration:

cdis1 Xk ⋅=ρ

Hydrolysis of carbohydrates:

chchhyd,2 Xk ⋅=ρ

Hydrolysis of proteins:

prprhyd,3 Xk ⋅=ρ

Hydrolysis of lipids:

lilihyd,4 Xk ⋅=ρ

Uptake of sugars:

5su
susuS,

su
sum,5 IX

SK

S
k ⋅⋅

+
⋅=ρ

Uptake of amino-acids:

6aa
aaaaS,

aa
aam,6 IX

SK

S
k ⋅⋅

+
⋅=ρ

Uptake of LCFA (long-chain fatty acids):

7fa
fafaS,

fa
fam,7 IX

SK

S
k ⋅⋅

+
⋅=ρ

Uptake of valerate:

€

ρ8 = km,c4 ⋅
Sva

KS,c4 + Sva
⋅ Xc4 ⋅

Sva
Sbu + Sva

⋅ I8

Uptake of butyrate:

9
buva

bu
c4

buc4S,

bu
c4m,9 I

SS

S
X

SK

S
k ⋅

+
⋅⋅

+
⋅=ρ

Uptake of propionate:

10pro
proproS,

pro
prom,10 IX

SK

S
k ⋅⋅

+
⋅=ρ

Uptake of acetate:

11ac
acacS,

ac
acm,11 IX

SK

S
k ⋅⋅

+
⋅=ρ

Uptake of hydrogen:

12h2
h2h2S,

h2
h2m,12 IX

SK

S
k ⋅⋅

+
⋅=ρ

Decay of Xsu:

suXsudec,13 Xk ⋅=ρ

Decay of Xaa:

aaXaadec,14 Xk ⋅=ρ

Decay of Xfa:

fadec_Xfa15 Xk ⋅=ρ

Aspects on ADM1 Implementation within the BSM2 Framework

 8

Decay of Xc4:

c4Xc4dec,16 Xk ⋅=ρ

Decay of Xpro:

proXprodec,17 Xk ⋅=ρ

Decay of Xac:

acXacdec,18 Xk ⋅=ρ

Decay of Xh2:

h2Xh2dec,19 Xk ⋅=ρ

In the expressions for ρ8 and ρ9, a small constant (1.10–6) should be been added at the denominator to the sum
(Sva + Sbu) in order to avoid division by zero in the case of poor choice of initial conditions for Sva and Sbu,
respectively. Apart from this, the above equations are identical to the original ADM1.

The acid-base rates for the BSM2 ODE implementation (see Chapter 4 and Appendix 1 for the corresponding
DAE implementation) are as follows:

€

ρA,4 = kA,Bva Sva − Ka,va + SH+() − Ka,vaSva()

€

ρA,5 = kA,Bbu Sbu − Ka,bu + SH+() − Ka,buSbu()

€

ρA,6 = kA,Bpro Spro− Ka,pro + SH+() − Ka,proSpro()

€

ρA,7 = kA,Bac Sac− Ka,ac + SH+() − Ka,acSac()

€

ρA,10 = kA,Bco2 Shco3− Ka,co2 + SH+() − Ka,co2SIC()

€

ρA,11 = kA,BIN Snh3 Ka,IN + SH+() − Ka,INSIN()
The modifications of the above equations compared to the original ADM1 was discussed in Section 3.3. The gas
transfer rates (note that Sco2 is used in the expression for ρT,10, not SIC) are defined as:

€

ρT,8 = KLa Sh2 −16 ⋅KH,h2pgas,h2()

€

ρT,9 = KLa Sch4 − 64 ⋅KH,ch4 pgas,ch4()

€

ρT,10 = KLa Sco2 − KH,co2 pgas,co2()

3.5.2. Process inhibition
The general process inhibition terms are expressed as:

limIN,aapH,65 IIII ⋅==

fah2,limIN,aapH,7 IIII ⋅⋅=

c4h2,limIN,aapH,98 IIIII ⋅⋅==

proh2,limIN,aapH,10 IIII ⋅⋅=

nh3limIN,acpH,11 IIII ⋅⋅=

limIN,h2pH,12 III ⋅=

Aspects on ADM1 Implementation within the BSM2 Framework

 9

€

IpH,aa =
exp −3

pH − pHUL,aa

pHUL,aa − pHLL,aa











2













: pH < pHUL,aa

1 : pH > pHUL,aa









€

IpH,ac =
exp −3

pH − pHUL,ac

pHUL,ac − pHLL,ac











2













: pH < pHUL,ac

1 : pH > pHUL,ac









€

IpH,h2 =
exp −3

pH − pHUL,h2

pHUL,h2 − pHLL,h2











2













: pH < pHUL,h2

1 : pH > pHUL,h2









€

I IN,lim =
1

1+ KS,IN SIN

fah2,I,h2
fah2, 1

1

KS
I

+
=

c4h2,I,h2
c4h2, 1

1

KS
I

+
=

proh2,I,h2
proh2, 1

1

KS
I

+
=

nh3I,nh3
nh3 1

1

KS
I

+
=

where

€

pH = − log10 SH+()

Batstone et al. (2002) use switching functions to account for inhibition due to pH. These functions are, however,
discontinuous (as seen above) and in a stiff system, such a switch can favour numerical instabilities. To reduce
this risk, a number of alternative functions can be used to express the inhibition due to pH. Expressions based on
hyperbolic tangents are frequently used instead, e.g.:

€

IpH =
1
2
1+ tan a ⋅ϕ()()

where

€

ϕ =
pH −

pHLL + pHUL
2

pHLL + pHUL
2

Values of a = 11 for IpH,aa and a = 22 for IpH,ac and IpH,h2, respectively, are appropriate to fit the function given in
Batstone et al. (2002). Another possible option is functions based on Hill functions, e.g.:

€

IpH =
pH n

pH n + KpH
n

where

€

KpH =
pHLL + pHUL

2

Siegrist et al. (2002) use a Hill inhibition function based on the hydrogen ion concentration instead. This solution

Aspects on ADM1 Implementation within the BSM2 Framework

 10

has been chosen for the ADM1 in BSM2. For the ADM1, this gives the following expressions:

aaaa

aa

pHH

pH
aapH, nn

n

KS

K
I

+
=

+

with 2
pH

aaUL,aaLL,

10
pHpH

K
+

−
= and

aaLL,aaUL,
aa

0.3
pHpH

n
−

=

acac

ac

pHH

pH
acpH, nn

n

KS

K
I

+
=

+

with 2
pH

acUL,acLL,

10
pHpH

K
+

−
= and

€

nac =
3.0

pHUL,ac − pHLL,ac

h2h2

h2

pHH

pH
h2pH, nn

n

KS

K
I

+
=

+

with 2
pH

h2UL,h2LL,

10
pHpH

K
+

−
= and

h2LL,h2UL,
h2

0.3
pHpH

n
−

=

The appropriate values of n in the respective types of Hill functions above are quite different. To fit the original
function given in Batstone et al. (2002), n = 24 for IpH,aa when the pH-based Hill function is used and n = 2 for
the hydrogen ion-based function. For IpH,ac and IpH,h2 the respective values of n are 45 and 3. Since the
appropriate values of n are dependent on the values of pHLL and pHUL, it is wise to implement n as exemplified
above for the hydrogen ion-based solution. If the value of pHLL or pHUL is changed then the value of n will
automatically be corrected.

For any practical purpose, the choice of function among the three principle ones discussed above is arbitrary.
However, for the BSM2 implementation the solution according to Siegrist et al. (2002) has been chosen.

3.5.3. Water phase equations
The influent liquid flow rate to the anaerobic digester is denoted Qad below. All the differential equations are
explicitly stated below although they can obviously be summarized in the general form, i.e.:

€

dSi
dt

=
Qad
Vad,liq

Si,in − Si() + ν i, j
j=1

19

∑ ρ j + transport terms; where i = 1…12

dX i
dt

=
Qad
Vad,liq

X i,in − X i() + ν i, j
j=1

19

∑ ρ j + transport terms; where i = 13…24

and the terms ν and ρ defined in a traditional Petersen matrix format. The complete water-phase equations are
written as:

Differential equations 1 to 12 (soluble matter) State no.

€

dSsu
dt

=
Qad
Vad,liq

Ssu,i − Ssu() + ρ2 + 1− f fa,li()ρ4 − ρ5
 (1)

€

dSaa
dt

=
Qad
Vad,liq

Saa,i − Saa() + ρ3 − ρ6
 (2)

€

dSfa
dt

=
Qad
Vad,liq

Sfa,in − Sfa() + f fa,liρ4 − ρ7
 (3)

€

dSva
dt

=
Qad
Vad,liq

Sva,i − Sva() + 1−Yaa() fva,aaρ6 − ρ8
 (4)

€

dSbu
dt

=
Qad
Vad,liq

Sbu,i − Ssu() + 1−Ysu() fbu,suρ5 + 1−Yaa() fbu,aaρ6 − ρ9
 (5)

Aspects on ADM1 Implementation within the BSM2 Framework

 11

€

dSpro
dt

=
Qad
Vad,liq

Spro,i − Spro() + 1−Ysu() fpro,suρ5 + 1−Yaa() fpro,aaρ6 + 1−Yc4() 0.54ρ8 − ρ10
 (6)

€

dSac
dt

=
Qad
Vad,liq

Sac,i − Sac() + 1−Ysu() fac,suρ5 + 1−Yaa() fac,aaρ6 + 1−Yfa() 0.7ρ7

+ 1−Yc4() 0.31ρ8 + 1−Yc4() 0.8ρ9 + 1−Ypro() 0.57ρ10 − ρ11

 (7)

€

dSh2
dt

=
Qad
Vad,liq

Sh2,i − Sh2() + 1−Ysu() fh2,suρ5 + 1−Yaa() fh2,aaρ6 + 1−Yfa() 0.3ρ7

+ 1−Yc4() 0.15ρ8 + 1−Yc4() 0.2ρ9 + 1−Ypro() 0.43ρ10 − ρ12 − ρT,8

 (8)

€

dSch4
dt

=
Qad
Vad,liq

Sch4,i − Sch4() + 1−Yac()ρ11 + 1−Yh2()ρ12 − ρT,9
 (9)

€

dSIC
dt

=
Qad
Vad,liq

SIC,i − SIC() − Ckν k, jρ j
k=1−9,11−24
∑















j=1

19

∑ −ρT ,10
 (10)
see below

€

dSIN
dt

=
Qad
Vad,liq

SIN,i − SIN() −YsuN bacρ5 + N aa −YaaN bac()ρ6 −Y faN bacρ7 −Y c4N bacρ8

−Y c4N bacρ9 −Y proN bacρ10 −Y acN bacρ11 −Y h2N bacρ12 + N bac − N xc() ρk
k=13

19

∑

+ N xc − fxi,xcN I − fsi,xcN I − fpr,xcN aa()ρ1

 (11)

€

dSI
dt

=
Qad
Vad,liq

SI,i − SI() + fsi,xcρ1
 (12)

(Note that state equation (8) is not used in the final DAE implementation of ADM1, see Sub-section 4.2.2 and
Appendix 1.2 for details.)

More specifically, the sum in the equation for state number 10 is calculated as (explicitly given below for
clarity):

€

Ckν k, jρ j
k=1−9,11−24
∑















j=1

19

∑ = skρk
k=1

12

∑ + s13 ρ13 + ρ14 + ρ15 + ρ16 + ρ17 + ρ18 + ρ19()

where

xIxcxI,lixcli,prxcpr,chxcch,sIxcsI,xc1 CfCfCfCfCfCs +++++−=

such2 CCs +−=

aapr3 CCs +−=

€

s4 = −Cli + 1− f la,li()Csu + f fa,liCfa

€

s5 = −Csu + 1−Ysu() fbu,suCbu + fpro,suCpro + fac,suCac() +YsuCbac

€

s6 = −Caa + 1−Yaa() fva,aaCva + fbu,aaCbu + fpro,aaCpro + fac,aaCac() +YaaCbac

€

s7 = −Cfa + 1−Yfa() 0.7Cac +YfaCbac

€

s8 = −Cva + 1−Yc4() 0.54Cpro + 1−Yc4() 0.31Cac +Yc4Cbac

Aspects on ADM1 Implementation within the BSM2 Framework

 12

€

s9 = −Cbu + 1−Yc4() 0.8Cac +Yc4Cbac

€

s10 = −Cpro + 1−Ypro() 0.57Cac +YproCbac

€

s11 = −Cac + 1−Yac()Cch4 +YacCbac

€

s12 = 1−Yh2()Cch4 +Yh2Cbac

xcbac13 CCs +−=

Differential equations 13 to 24 (particulate matter) State no.

€

dXc
dt

=
Qad
Vad,liq

Xc,i − Xc() − ρ1 + ρ13 + ρ14 + ρ15 + ρ16 + ρ17 + ρ18 + ρ19
 (13)

€

dXch
dt

=
Qad
Vad,liq

Xch,i − Xch() + fch,xcρ1 − ρ2
 (14)

€

dXpr
dt

=
Qad
Vad,liq

Xpr,i − Xpr() + fpr,xcρ1 − ρ3
 (15)

€

dX li
dt

=
Qad
Vad,liq

X li,i − X li() + f li,xcρ1 − ρ4
 (16)

€

dXsu
dt

=
Qad
Vad,liq

Xsu,i − Xsu() +Ysuρ5 − ρ13
 (17)

€

dXaa
dt

=
Qad
Vad,liq

Xaa,i − Xaa() +Yaaρ6 − ρ14
 (18)

€

dXfa
dt

=
Qad
Vad,liq

Xfa,i − Xfa() +Yfaρ7 − ρ15
 (19)

€

dXc4
dt

=
Qad
Vad,liq

Xc4,i − Xfa() +Yc4ρ8 +Yc4ρ9 − ρ16
 (20)

€

dXpro
dt

=
Qad
Vad,liq

Xpro,i − Xpro() +Yproρ10 − ρ17
 (21)

€

dXac
dt

=
Qad
Vad,liq

Xac,i − Xac() +Yacρ11 − ρ18
 (22)

€

dXh2
dt

=
Qad
Vad,liq

Xh2,i − Xh2() +Yh2ρ12 − ρ19
 (23)

€

dXI
dt

=
Qad
Vad,liq

XI,i − XI() + fxi_xcρ1
 (24)

Aspects on ADM1 Implementation within the BSM2 Framework

 13

Differential equations 25 and 26 (cations and anions) State no.

€

dScat +

dt
=

Qad
Vad,liq

Scat + ,i − Scat +() (25)

€

dSan −
dt

=
Qad
Vad,liq

San − ,i − San −() (26)

Differential equations 27 to 32 (ion states, only for ODE implementation) State no.

4A
va

,dt

dS
ρ−=

− (27)

5A
bu

,dt

dS
ρ−=

− (28)

6A
pro

,dt

dS
ρ−=

− (29)

7A
ac

,dt

dS
ρ−=

− (30)

10A
hco3

,dt

dS
ρ−=

− (31)

11A
nh3

,dt

dS
ρ−=

 (32)

Note that the differential equations for states 27-32 are not used in either of the DAE implementations. Instead
the ion states are then calculated using algebraic equations. However, an algebraic equation for the pH
calculation is used also for the ODE implementation as:

W
2

H
4

2

1

2
KS +Θ+

Θ
−=+

where

−

−−−−

−++ −−−−−−+=Θ
an

vabuproac
hco3nh4cat 20816011264

S
SSSS

SSS

nh3INnh4
SSS −=+

The above equation for calculating SH+ is based on the general charge balance in ADM1, i.e.:

€

Scat + + Snh4 + + SH+ − Shco3− −
Sac−
64

−
Spro−
112

−
Sbu −
160

−
Sva −
208

− SOH− − San − = 0

where

€

SOH− −
KW
SH+

= 0 and KW is given in Table 3 (Section 6.3). Substituting SOH– by KW/SH+ in the above equation and

rewriting it yields a quadratic expression of SH+, which can be easily solved analytically since all other variables
are known. Obviously the negative root is not a valid solution.

Aspects on ADM1 Implementation within the BSM2 Framework

 14

We also calculate the concentration of dissolved carbon dioxide algebraically as:

−−=
hco3ICco2 SSS

3.5.4. Gas phase equations
Differential equations 33 to 35 describe the fate of the gas phase components: State no.

gasad,

liqad,
8

gaad,

gash2gas,h2gas,

V

V

V

QS

dt

dS
,T

s

⋅+−= ρ
 (33)

gasad,

liqad,
9T

gasad,

gasch4gas,ch4gas,

V

V

V

QS

dt

dS
, ⋅+−= ρ

 (34)

gasad,

liqad,
10T

gasad,

gasco2gas,co2gas,

V

V

V

QS

dt

dS
, ⋅+−= ρ

 (35)

where Qgas denote the gas flow rate. The associated algebraic equations required for the gas transfer rates ρT,8,
ρT,9 and ρT,10 are:

€

pgas,h2 = Sgas,h2 ⋅
RTad
16

€

pgas,ch4 = Sgas,ch4 ⋅
RTad
64

adco2gas,co2gas, RTSp ⋅=

€

Qgas =
RTad

Patm − pgas,h2o
⋅Vad,liq ⋅

ρT,8
16

+
ρT,9
64

+ ρT,10










where Tad denote the operational temperature of the digester. The gas flow rate and partial pressures are
obviously essential output variables from the model. The expression for pgas,h2o is given in Table 3 (Section 6.3).
A potential problem when using the above manner for calculating the gas flow rate is that is may give rise to
some numerical problems in the solution of the equations. Multiple steady states as well as numerical instability
have been reported among some users. An alternative way of calculating the gas flow rate is also given in
Batstone et al. (2002):

€

Qgas = kp Pgas − Patm()
where h2ogas,co2gas,ch4gas,h2gas,gas ppppP +++=

The alternative expression assumes an overpressure in the head space. Note that the equations for pgas,h2, pgas,ch4,
pgas,co2 and pgas,h2o are identical for both ways of calculating Qgas. Consequently, the gas flow rate is calculated at
a slightly higher pressure compared to the first expression. To compensate for this, the expression needs to
rewritten into

€

Qgas = kp Pgas − Patm() ⋅
Pgas
Patm

to obtain the gas flow rate at atmospheric pressure. Although this compensation factor is included, the two
expressions will not yield identical results. Depending on the operational overpressure, which is a function of the
value of parameter kp (related to the friction in the gas outlet), the alternative expression results in a slightly
smaller gas flow rate. The reason for this is that the liquid-gas transfer rates (ρT,8, ρT,9, ρT,10) will be different. A
comparison of the two expressions when the same overpressure is applied shows very similar results (the relative
error in the range of 1.10–5). For BSM2, the alternative way (assuming an overpressure in the head space) of
calculating the gas flow rate is used. Also note that if the physical or operational conditions of the digester model

Aspects on ADM1 Implementation within the BSM2 Framework

 15

are changed (volume, load etc.), for example if applying the ADM1 as a stand-alone model outside the
framework of BSM2, then the parameter kp will have to be adjusted to achieve a reasonable overpressure in the
head space.

4. ADM1 DAE IMPLEMENTATION
It has been realized that the ODE implementation is problematic for use in the BSM2 framework due to the
computational effort. Therefore, two DAE versions have been developed (Rosen et al., 2006). In this section, the
differential algebraic equation model implementations of ADM1 are presented. Two different DAE models are
discussed: a model based on algebraic pH (SH+) calculations (DAEpH) and a model based on algebraic pH and Sh2

calculations (DAEpH,Sh2
). The second model implementation is motivated by the stiffness problem of the ODE

and DAEpH implementations.

4.1. Motivation
The fact that the Matlab/Simulink ADM1 implementation discussed here aims at being an integrated part of the
BSM2 puts some requirements on the way the ADM1 is implemented. The model must be able to handle
dynamic inputs, time-discrete and event-driven control actions as well as stochastic inputs or noise and still be
sufficiently efficient and fast to allow for extensive simulations.

4.1.1. Dynamic inputs
BSM2 aims at developing and evaluating control strategies for wastewater treatment. The challenge of
controlling a WWTP lies mainly in the changing influent wastewater characteristics. The generation of dynamic
input is, thus, an integrated part of BSM2. This means that, except in order to obtain initial conditions, BSM2 is
basically always simulated using dynamic input and, consequently, no plant unit is ever at steady state.
According to the BSM2 protocol, using dynamic influent data, the plant is simulated for 63 days to reach a
pseudo steady state. This is followed by 182 days of simulation for initialisation of control and/or monitoring
algorithms. The subsequent 364 days of simulation is the actual evaluation period. In total, this encompasses 609
days of dynamic simulations with new data every 15 minutes (Gernaey et al., 2005; 2006).

4.1.2. Control actions
The BSM2 is a control benchmark. It should, thus, be possible to test and evaluate various types of controllers
(Jeppsson et al., 2006; 2007). From a numerical point of view, continuous controllers yield the least
computational effort. However, discrete controllers are more common and many commercially available sensors
are also discrete in nature. Moreover, some control actions can be event driven when applying rule-based control
(e.g. if-then-else rules). Introducing discrete controllers and sensors as well as event-driven control in the model
results in a so-called hybrid system. Numerical solvers designed to handle stiff systems do not work well on
hybrid systems.

4.1.3. Noise sources
To obtain realistic and useful evaluation results from an investigation of a control strategy, the strategy must be
subjected to various types of errors and disturbances encountered in real operation. Some of the most important
sources of errors are sensor noise and time delays. Realistic sensor model behaviour requires the dynamic
properties and disturbance sources to be represented. This typically includes modelling of noise and time
response and, if not a continuous sensor, the sampling and measuring interval (Rieger et al., 2003). Noise
generation must be done individually for each sensor in the system so that the applied noise is uncorrelated.
Numerical solvers designed to handle stiff systems do not work well on systems affected by noise.

4.1.4. Simulating stiff systems in Matlab/Simulink
A system is called stiff, when the range of the model time constants is large. This means that some of the system
states react quickly whereas some react sluggishly. The ADM1 is a very stiff system with time constants ranging
from fractions of a second to months. This makes the simulation of such a system challenging and in order to
avoid excessively long simulation time, one needs to be somewhat creative when implementing the model.

Some of the numerical solvers in Matlab/Simulink are so called stiff solvers and, consequently, capable of
solving stiff systems efficiently. However, a problem common to all stiff solvers is the difficulty to handle
dynamic input – including noise as well as hybrid systems. The more stochastic or random an input variable
behaves, the more problematic is the numerical simulation using a stiff solver. The reason for this is that in stiff

Aspects on ADM1 Implementation within the BSM2 Framework

 16

solvers, predictions of future state values are carried out. However, predictions of future state values affected by
stochastic inputs will result in poor results, slowing down the solver by limiting its ability to use long integration
steps. Simulation of the BSM2 is, thus, subject to the following dilemma. BSM2, which includes ASM1 and
ADM1 models, is a very stiff system and, consequently, a stiff solver should be used. However, since BSM2 is a
control simulation benchmark, noise must be included, calling for an explicit (i.e. non-stiff) solver.

4.1.5. ODE and DAE systems
When the states of a system are described only by ordinary differential equations, the system is said to be an
ODE system. If the system is stiff, it is sometimes possible to rewrite some of the system equations in order to
omit the fastest states. The rationale for this is that from the slower states’ point of view, the fast states can be
considered instantaneous and possible to describe by algebraic equations. Such systems are normally referred to
as differential algebraic equation (DAE) systems. By rewriting an ODE system to a DAE system, the stiffness
can be decreased, allowing for explicit solvers to be used and for stochastic elements to be incorporated. The
drawback is that the DAE system is only an approximation of the original system and the effect of this
approximation must be considered and investigated for each specific simulation model.

4.1.6. Time constants in ADM1
As mentioned before, the ADM1 includes time constants covering a wide range; from milliseconds for pH to
weeks or months for the states describing various fractions of active biomass. Since most control actions
affecting the anaerobic digester are fairly slow, it makes sense to investigate which fast states can be
approximated by algebraic equations. In Batstone et al. (2002), it is suggested that the pH (SH+) state is
calculated by algebraic equations. However, this will only partially solve the stiffness problem. There are other
fast states and a closer investigation suggests that the state describing hydrogen (Sh2) also needs to be
approximated by an algebraic equation in order to enhance the performance when simulating the ADM1 using a
explicit solver.

4.2. DAE equations

4.2.1. pH solver
As mentioned above, stiffness of the ADM1 can be reduced by approximating the differential equations of the
pH and Sh2 states by algebraic equations. An implicit algebraic equation for the pH calculation is given in
(Batstone et al., 2002) (Table B.3). It has been suggested to calculate the SH+ and, consequently, the pH from the
sum of all charges, which is supposed to be zero. The obtained implicit algebraic equations are non-linear and
therefore can be solved only by an iterative numerical method. In our case, the Newton-Raphson method used in
Volcke (2006) for calculation of the pH and equilibrium concentrations (i.e. the acid-base equations (states 27-
32) in Sub-section 3.5.3) was implemented. By using this method the new value of the unknown state is
calculated at each iteration step k as:

€

SH+ ,k+1 = SH+ ,k −
E SH+ ,k()

dE SH+() dSH+ S
H+ ,k

where SH+,k is the value of the state obtained from the previous iteration step and E(SH+,k) is the value of the
algebraic equation that has to be zero for the equilibrium, i.e.:

€

E SH+ ,k() = Scat + ,k + Snh4 + ,k + SH+ ,k − Shco3− ,k −
Sac− ,k
64

−
Spro− ,k
112

−
Sbu − ,k
160

−
Sva − ,k
208

−
KW
SH+ ,k

− San − ,k

The gradient of the algebraic equation dE(SH+,k)/dSH+|SH+,k is also needed for calculation of the new state value.
Since this expression is rather complex it is not stated here. The reader is referred to Appendix 1.1 or Volcke
(2006) for details on the expression. The iteration is repeated as long as E(SH+,k) remains larger than the
predefined tolerance value, which in our case is set to 1.10–12. Normally only two or three iterations are required
to solve the equation at each time step.

Aspects on ADM1 Implementation within the BSM2 Framework

 17

4.2.2. Sh2 solver
The differential equation for the Sh2 state (mass balance), explicitly given in the ODE implementation description
in this report (state 8), can be approximated by an algebraic equation in the same principle way as was the case
for the SH+ state (charge balance), simply by setting its differential to zero (assuming fast dynamics). The
iteration is carried out in a similar way as for the SH+ calculation, this time using

€

E Sh2,k() =
Qad
Vad,liq

Sh2,i − Sh2,k() + 1−Ysu() fh2,suρ5 + 1−Yaa() fh2,aaρ6 + 1−Yfa() 0.3ρ7

+ 1−Yc4() 0.15ρ8 + 1−Yc4() 0.2ρ9 + 1−Ypro() 0.43ρ10 − ρ12 − ρT,8

and the gradient of E(Sh2,k+1). The expression of the gradient is fairly complex and the reader is referred to
Appendix 1.2 for exact details of the mathematical expression. For the interested reader to obtain the gradients
for the SH+ and S h2 equations on his/her own, it is recommended that a tool for handling mathematics
symbolically is used (e.g. Maple or Mathematica). Generic expressions for each term are also listed in Volcke
(2006).

5. COMPARISON BETWEEN ODE AND DAE IMPLEMENTATIONS

5.1. Introduction
In order to verify the DAE implementation suggested here, it is compared with the ODE implementation. In
steady state, the differences should be, and are, very small (close to machine numerical precision). The
differences during dynamic conditions have been studied extensively as part of the benchmarking work and
within other projects and have been found to be fully acceptable (some small differences are unavoidable due to
the mathematics and numerics of the ODE and DAE implementations). However, it is a good strategy to always
make a dynamic simulation using the ODE implementation and comparing the results with those from any of the
DAE implementations when applying the ADM1 models to different input data and different operating regions
than what is used within the benchmark system. Thereby any potential (and unforeseen) problems can be
identified at an early stage.

5.2. Steady-state comparison
The three model implementations discussed in this technical report, i.e. ODE, DAE with only a pH solver
(DAE1) and DAE with a pH solver and a Sh2 solver (DAE2), were simulated for 200 days to reach steady state.
Both relative and absolute errors were investigated using the ODE simulation as a reference. Only minor errors
were encountered – the largest relative errors in the range of 1.10–6. The largest absolute errors, around 1.10–5,
were found for the states with large steady-state values (no scaling of states in the used implementations). The
result is not surprising since the difference between the models is in the dynamic description of the equations.

5.3. Dynamic comparison
To test the dynamic differences between the model implementations in the BSM2 operational region, a
preliminary version of the BSM2 was run to create sensible input data for the digester. The simulation period
was 50 days and included recycling streams from the digester. Thus, the digester was included in the model
when data was produced. The input data were stored at 15-minute sampling intervals.

To evaluate the dynamic differences, the digester model was simulated alone with the stored input data as input
for the whole duration. The last seven days was used for evaluation be means of calculating the mean absolute
relative error of each variable using the ODE implementation as the reference. The main difference between
DAE1 and DAE2 was in state variable 8, i.e. the hydrogen state. The mean error was slightly larger than 0.01%,
which must be considered to be acceptable. Especially, since all the other state errors (perhaps except state 23
Xh2) are more or less identical.

The fact that the mean errors were in the range of 1.10–4 when each sample time was investigated independently
does not mean that the relative error of the mean value of each state variable is in the same range. The most
deviating variable is the gas flow rate, which is not surprising, for reasons discussed earlier in conjunction with
the choice of gas flow rate expression. Also here, the DAE1 and 2 behaved similar in terms of dynamic errors.

Aspects on ADM1 Implementation within the BSM2 Framework

 18

NOTE! The choice between the three implementations of ADM1 – ODE, DAE1 and DAE2 – is up to the user. If
acceptable computation times can be achieved with the ODE or DAE1 implementations there is no other
advantage in using DAE2. However, for Matlab/Simulink it appears that with currently available solvers, DAE2
is the only practically feasible choice for BSM2.

6. ADM1 BENCHMARK MODEL PARAMETERS
In the sections below the ADM1 parameters used for the BSM2 implementation are presented. In cases where
the parameter value in ADM1 for BSM2 differs from the default ADM1 parameter value (Batstone et al., 2002)
the explicit row is marked in grey and the default value is given in the commentary field. In a few cases it is not
really possible to determine explicitly what the ADM1 suggested default parameter values are, since several
possible values may be stated (depending on temperature, different references, etc.) or no value at all is given (in
some cases the selected values below are based on the original ADM1 implementation in AquaSim by the
ADM1 Task Group). Also, in cases where different options have been given for mesophilic high rate, mesophilic
solids and thermophilic solids AD systems in Batstone et al. (2002), the values below refer to mesophilic solids
systems.

Obviously many of the parameter values are application specific and should, if possible, be determined or
estimated based on measured data. However, for the purpose of the BSM2, the values suggested below produce
satisfactory results. It should be noted that the parameter values for the hydrolysis rates (10 d–1) used in both
ADM1-BSM2 and given as default parameter values in the ADM1 STR are nowadays considered to be at least
ten times too large (Batstone 2002-2008, personal communication).

6.1. Stoichiometric parameter values

Table 1: Stoichiometric parameter values for the BSM2 ADM1 implementation

Parameter Value Unit Process(es) Comments

fSI,xc 0.1 – 1
fXI,xc 0.2 – 1 ADM1 default value = 0.25
fch,xc 0.2 – 1
fpr,xc 0.2 – 1
fli,xc 0.3 – 1 ADM1 default value = 0.25

Note: 1 – fch,xc – fpr,xc – fSI,xc – fli,xc – fXI,xc = 0
Nxc 0.0376/14 – 1, 13-19 ADM1 default value = 0.002

 0.0376/14: to maintain N balance for
disintegration, see Section 3.1.1.

NI 0.06/14 kmole N.kg–1 COD 1 ADM1 default value = 0.002
Here: 6% on weight basis based on ASM1

Naa 0.007 kmole N.kg–1 COD 1, 6
Cxc 0.02786 kmole C.kg–1 COD 1, 13-19 C13 in state equation 10

Not stated in ADM1 STR but value of 0.03
used in original AquaSim implementation
0.02786: to maintain C balance for
disintegration, see Section 3.1.1.

CSI 0.03 kmole C.kg–1 COD 1 C12 in state equation 10
Not stated in ADM1 STR but value of 0.03
used in original TG AquaSim implementation

Cch 0.0313 kmole C.kg–1 COD 1, 2 C14 in state equation 10
Cpr 0.03 kmole C.kg–1 COD 1, 3 C15 in state equation 10

Not stated in ADM1 STR but value of 0.03
used in original TG AquaSim implementation

Cli 0.022 kmole C.kg–1 COD 1, 4 C16 in state equation 10
CXI 0.03 kmole C.kg–1 COD 1 C24 in state equation 10

Not stated in ADM1 STR but value of 0.03
used in original TG AquaSim implementation

Csu 0.0313 kmole C.kg–1 COD 2, 5 C1 in state equation 10
Caa 0.03 kmole C.kg–1 COD 3, 6 C2 in state equation 10

Aspects on ADM1 Implementation within the BSM2 Framework

 19

Not stated in ADM1 STR but value of 0.03
used in original TG AquaSim implementatio

ffa,li 0.95 – 4
Cfa 0.0217 kmole C.kg–1 COD 4, 7 C3 in state equation 10
fh2,su 0.19 – 5
fbu,su 0.13 – 5
fpro,su 0.27 – 5
fac,su 0.41 – 5
Nbac 0.08/14 kmole N.kg–1 COD 5-19 ADM1 default value = 0.00625

Here: 8% on weight basis based on ASM1
Cbu 0.025 kmole C.kg–1 COD 5, 6, 9 C5 in state equation 10
Cpro 0.0268 kmole C.kg–1 COD 5, 6, 8, 10 C6 in state equation 10
Cac 0.0313 kmole C.kg–1 COD 5-11 C7 in state equation 10
Cbac 0.0313 kmole C.kg–1 COD 5-19 C17–23 in state equation 10
Ysu 0.1 – 5 kmole CODX.kg–1 CODS

fh2,aa 0.06 – 6
fva,aa 0.23 – 6
fbu,aa 0.26 – 6
fpro,aa 0.05 – 6
fac,aa 0.40 – 6
Cva 0.024 kmole C.kg–1 COD 6, 8 C4 in state equation 10
Yaa 0.08 – 6 kmole CODX.kg–1 CODS

Yfa 0.06 – 7 kmole CODX.kg–1 CODS

Yc4 0.06 – 8, 9 kmole CODX.kg–1 CODS

Ypro 0.04 – 10 kmole CODX.kg–1 CODS

Cch4 0.0156 kmole C.kg–1 COD 11, 12 C9 in state equation 10
Yac 0.05 – 11 kmole CODX.kg–1 CODS

Yh2 0.06 – 12 kmole CODX.kg–1 CODS

Note that Ch2 and CIN, i.e. C8 and C11, are equal to zero in state equation 10 (SIC)

6.2. Biochemical parameter values

Table 2: Biochemical parameter values for the BSM2 ADM1 implementation

Parameter Value Unit Process(es) Comments

kdis 0.5 d-1 1
khyd,ch 10 d-1 2
khyd,pr 10 d-1 3
khyd,li 10 d-1 4
KS,IN 1.10-4 M 5-12
km,su 30 d-1 5
KS,su 0.5 kg COD.m-3 5
pHUL,aa 5.5 - 5-10 in process inhibition equations I5–10

pHLL,aa 4 - 5-10 in process inhibition equations I5–10

km,aa 50 d-1 6
KS,aa 0.3 kg COD.m-3 6
km,fa 6 d-1 7
KS,fa 0.4 kg COD.m-3 7
KI,h2,fa 5.10-6 kg COD.m-3 7 in process inhibition equation I7

km,c4 20 d-1 8, 9
KS,c4 0.2 kg COD.m-3 8, 9
KI,h2,c4 1.10-5 kg COD.m-3 8, 9 in process inhibition equations I8 and I9

km,pro 13 d-1 10
KS,pro 0.1 kg COD.m-3 10
KI,h2,pro 3.5·10-6 kg COD.m-3 10 in process inhibition equations I8 and I9

km,ac 8 d-1 11
KS,ac 0.15 kg COD.m-3 11
KI,NH3 0.0018 M 11 in process inhibition equation I11

pHUL,ac 7 - 11 in process inhibition equation I11

Aspects on ADM1 Implementation within the BSM2 Framework

 20

pHLL,ac 6 - 11 in process inhibition equation I11

km,h2 35 d-1 12
KS,h2 7.10-6 kg COD.m-3 12
pHUL,h2 6 - 12 in process inhibition equation I12

pHLL,h2 5 - 12 in process inhibition equation I12

kdec,Xsu 0.02 d-1 13
kdec,Xaa 0.02 d-1 14
kdec,Xfa 0.02 d-1 15
kdec,Xc4 0.02 d-1 16
kdec,Xpro 0.02 d-1 17
kdec,Xac 0.02 d-1 18
kdec,Xh2 0.02 d-1 13
The unit M is defined as kmole m–3 according to Batstone et al. (2002)

6.3. Physico-chemical parameter values

Table 3: Physico-chemical parameter values for the BSM2 ADM1 implementation

Parameter Value Unit Comments

R 0.083145 bar.M-1.K-1 ADM1 default value = 0.08314
Tbase 298.15 K ADM1 default value = 298
Tad 308.15 K = 35°C
Kw

10-14.0

€

exp 55900
100 ⋅R

⋅
1

Tbase
−
1
Tad














 




 

M ≈ 2.08·10-14

Ka,va 10-4.86 M ≈ 1.38·10-5

Ka,bu 10-4.82 M ≈ 1.5·10-5

Ka,pro 10-4.88 M ≈ 1.32·10-5

Ka,ac 10-4.76 M ≈ 1.74·10-5

Ka,co2
10-6.35

€

exp 7646
100 ⋅R

⋅
1

Tbase
−
1
Tad














 




 

M ≈ 4.94·10-7

Ka,IN
10-9.25

€

exp 51965
100 ⋅R

⋅
1

Tbase
−
1
Tad














 




 

M ≈ 1.11·10-9

kA,Bva 1.1010 M-1.d-1

kA,Bbu 1.1010 M-1.d-1

kA,Bpro 1.1010 M-1.d-1

kA,Bac 1.1010 M-1.d-1

kA,Bco2 1.1010 M-1.d-1

kA,BIN 1.1010 M-1.d-1

Set to be at least three orders of
magnitude higher than the fastest
time constant of the system
ADM1 suggested default value =
1.108

Patm 1.013 bar
pgas,h2o

€

0.0313 ⋅ exp 5290 ⋅ 1
Tbase

−
1
Tad














 




 

bar ≈ 0.0557

kp 5.104 m3.d-1.bar-1 Explicit for BSM2 AD conditions
to achieve a reasonable head space
pressure. Must be recalibrated for
other cases.

KLa 200 d-1

KH,co2

€

0.035 ⋅ exp −19410
100 ⋅R

⋅
1

Tbase
−
1
Tad














 




 

Mliq.bar-1 ≈ 0.0271

KH,ch4

€

0.0014 ⋅ exp −14240
100 ⋅R

⋅
1

Tbase
−
1
Tad














 




 

Mliq.bar-1 ≈ 0.00116

KH,h2

€

7.8 ⋅10−4 ⋅ exp −4180
100 ⋅R

⋅
1

Tbase
−
1
Tad














 




 

Mliq.bar-1 ≈ 7.38·10-4

Aspects on ADM1 Implementation within the BSM2 Framework

 21

6.4. Physical parameter values used in BSM2

Table 4: Physical parameter values for the BSM2 ADM1 implementation

Parameter Value Unit

Vad,liq 3400 m3

Vad,gas 300 m3

7. ADM1 BENCHMARK MODEL STEADY-STATE RESULTS
In this section, the results of a steady state simulation are given. They should serve as a starting point for
verification of any model implementation according to the description given in this report. The inputs may not be
completely realistic for all variables but have been chosen so that every input is active (i.e. non-zero) thereby
allowing all internal modes of the ADM model to be excited. Note that the resulting pH in the AD is about 7.5,
i.e. the pH-inhibition functions are not really active in this test case. The retention time is 20 days and the
operating temperature 35 °C. As a part of the BSM Task Group’s work model interfaces for connecting ASM1
and ADM1 (and vice versa) have been developed (see e.g. Nopens et al. (2008) and BSM Task Group Technical
Report on Interfacing). The ASM1 to ADM1 interface fractionates the incoming COD into inerts, carbohydrates,
proteins and lipids rather than putting the incoming COD into the ADM1 as composite material. Consequently,
the composite material value in this example is low and the values of the other input variables are comparably
high. The influent TSS concentration is about 4.5%. The produced gas contains about 61% methane and 34%
carbon dioxide (the rest is mainly water vapour). For a more thorough verification of the dynamics, results from
the full BSM2 ring test procedure may be used (see BSM Task Group Technical Report on Ring-testing).

Table 5: Steady-state input variable values for BSM2 ADM1

State no. Variable Value Unit

1 Ssu,i 0.01 kg COD.m–3

2 Saa,i 0.001 kg COD.m–3

3 Sfa,i 0.001 kg COD.m–3

4 Sva,i 0.001 kg COD.m–3

5 Sbu,i 0.001 kg COD.m–3

6 Spro,i 0.001 kg COD.m–3

7 Sac,i 0.001 kg COD.m–3

8 Sh2,i 1.10–8 kg COD.m–3

9 Sch4,i 1.10–5 kg COD.m–3

10 SIC,i 0.04 kmole C.m–3

11 SIN,i 0.01 kmole N.m–3

12 SI,i 0.02 kg COD.m–3

13 XC,I 2.0 kg COD.m–3

14 Xch,i 5.0 kg COD.m–3

15 Xpr,i 20.0 kg COD.m–3

16 Xli,i 5.0 kg COD.m–3

17 Xsu,i 0.0 kg COD.m–3

18 Xaa,i 0.01 kg COD.m–3

19 Xfa,i 0.01 kg COD.m–3

20 Xc4,i 0.01 kg COD.m–3

21 Xpro,i 0.01 kg COD.m–3

22 Xac,i 0.01 kg COD.m–3

23 Xh2,i 0.01 kg COD.m–3

24 XI,i 25.0 kg COD.m–3

25 Scat,i 0.04 kmole.m–3

26 San,i 0.02 kmole.m–3

– Qad 170.0 m3.d–1

– Top 35.0 °C

Aspects on ADM1 Implementation within the BSM2 Framework

 22

Table 6: Steady-state output variable values for BSM2 ADM1

State no. Variable Value Unit

1 Ssu 0.011954829716958 kg COD.m–3

2 Saa 0.005314740171633 kg COD.m–3

3 Sfa 0.098621400930799 kg COD.m–3

4 Sva 0.011625006463861 kg COD.m–3

5 Sbu 0.013250729666269 kg COD.m–3

6 Spro 0.015783666284542 kg COD.m–3

7 Sac 0.197629716937552 kg COD.m–3

8 Sh2 0.000000235945059 kg COD.m–3

9 Sch4 0.055088776445959 kg COD.m–3

10 SIC 0.152677870626333 kmole C.m–3

11 SIN 0.130229815803682 kmole N.m–3

12 SI 0.328697663721532 kg COD.m–3

13 XC 0.308697663721532 kg COD.m–3

14 Xch 0.027947240435040 kg COD.m–3

15 Xpr 0.102574106106682 kg COD.m–3

16 Xli 0.029483049707287 kg COD.m–3

17 Xsu 0.420165982454567 kg COD.m–3

18 Xaa 1.179171798923700 kg COD.m–3

19 Xfa 0.243035344719442 kg COD.m–3

20 Xc4 0.431921105635979 kg COD.m–3

21 Xpro 0.137305908933954 kg COD.m–3

22 Xac 0.760562658313215 kg COD.m–3

23 Xh2 0.317022953361272 kg COD.m–3

24 XI 25.617395327443063 kg COD.m–3

25 Scat 0.040000000000000 kmole.m–3

26 San 0.020000000000000 kmole.m–3

– Qad 170.0000000000000 m3.d–1

– Top 35.00000000000000 °C
– pH 7.465537769904638 –
– SH+ 0.000000034234361 kmole H+.m–3

27 Sva– 0.011596247072545 kg COD.m–3

28 Sbu– 0.013220826248532 kg COD.m–3

29 Spro– 0.015742783191567 kg COD.m–3

30 Sac– 0.197241155436605 kg COD.m–3

31 Shco3– 0.142777479392078 kmole C.m–3

– Sco2 0.009900391234255 kmole C.m–3

32 Snh3 0.004090928458444 kmole N.m–3

– Snh4+ 0.126138887345238 kmole N.m–3

33 Sgas,h2 0.000010241035595 kg COD.m–3

34 Sgas,ch4 1.625607209981422 kg COD.m–3

35 Sgas,co2 0.014150534678395 kmole C.m–3

– pgas,h2 0.000016399182640 bar
– pgas,ch4 0.650779632823186 bar
– pgas,co2 0.362552713328102 bar
– Pgas 1.069016490408918 bar
– Qgas 2955.703454193784 Nm3.d–1

Note that the gas flow rate, Qgas, in Table 6 is the flow rate at atmospheric pressure and not at the pressure of the
head space. The simulation above was carried out using the ode15s stiff solver with a relative tolerance of 1.10–10

and an absolute tolerance of 1.10–12.

Aspects on ADM1 Implementation within the BSM2 Framework

 23

8. SIMULATION EFFICIENCY ANALYSIS
To evaluate the model implementations described in this report, a number of simulation tests were carried out.
These tests included 1) steady-state simulations, 2) dynamic simulations for two weeks to compare the transient
behaviour in detail and 3) dynamic simulations for 609 days to compare overall simulation times. The model
implementations investigated were:

1. ODE – the differential equation implementation;
2. DAE1 – differential equations with algebraic solution of pH (SH+);
3. DAE2 – differential equations with algebraic solution of pH and Sh2.

All three models were tested as a part of the BSM2. This means that the behaviour reported here refers to the
whole BSM2 system. The simulations were carried out using a standard PC running Windows XP and
Matlab/Simulink Release 13. The ASM1, the clarifiers and the ADM1 were all implemented as MEX-files based
on C source code.

8.1. Steady state simulations
The three model implementations were simulated for 200 days to reach steady state. Both relative and absolute
errors were investigated using the ODE simulation as a reference. Only minor errors were encountered – the
largest relative errors in the range of 10-6. The largest absolute errors, 10-5, were found in the states with large
steady-state values (no scaling of states in the implementations). The result is not surprising since the difference
between the models is in the dynamic description of the equations.

8.2. Transient behaviour
Although the model implementations differ in the description of pH and Sh2 dynamics, no significant differences
were obtained when the transients in the states were investigated. The relative errors are typically in the range of
10-6 or smaller, again using the ODE implementation as reference. However, one important exception is the gas
flow rate. Although not a true state of the model, the gas flow rate seems to be highly sensitive to the integration
algorithm and the step length used. The use of some solvers resulted in a very nervous behaviour in the gas flow
rate with noise in the range of a few percent. This nervousness appears in all model implementations discussed in
this report, especially when a noise generator is present, and is most likely caused by integration numerics. Since
the gas flow rate is a very important variable this must be taken into consideration.

8.3. Simulation speed
The simulation speed was tested using different solvers. A discontinuous sensor with a noise source and time
delay as well as a discrete feed-back controller were implemented to test the three implementations in a hybrid
system with noise. The results are shown in Table 7 as relative simulation times, using DAE2 with ode45 as the
reference (simulation time for all 609 days was 50 minutes using a relative integration tolerance of 10-5). It is
interesting to note that the implementation of only a pH solver does not give any significant improvement in
simulation speed. Substantial improvement is not obtained unless the fast state associated with Sh2 is removed.
To better understand this dramatic improvement in simulation speed, Figure 1 shows the eigenvalues (λ) of the
linearised ADM1 implementations, respectively. Investigation of the eigenvalues of the system matrix provides
an indication on how the distribution of time constants appears in the system at a certain operating point. From
the figure, it is evident that the eigenvalue associated with the pH (SH+) is a factor 10 larger than the one
associated with the Sh2 state. However, the third largest eigenvalue is only about 1/100 of that of associated with
Sh2. Clearly, both pH and Sh2 must be removed to significantly reduce the stiffness of the system. However, it
should be noted that the working point investigated is the anticipated working point of the BSM2.

Table 7: Relative simulation times for the three different implementations of ADM1

ode45 ode23 ode23tb (stiff) ode15s (stiff)
ODE 53 96 28 18
DAE1 53 85 27 17
DAE2 1 (ref.) 1.2 28 18
ODE* 65 51 5 4
DAE1* 87 48 5 4
DAE2* 0.75 0.5 5 4

* Implementation without noise and without time discrete sensor/controller.

Aspects on ADM1 Implementation within the BSM2 Framework

 24

Rewriting the ODE system into a DAE system, representing both the pH and Sh2 state by algebraic equations,
yields a significant simulation time reduction. As seen in Table 7, the improvement when noise and discrete
sensors are present is significant. This also holds in the absence of noise or when discrete sensors are
implemented. Compared to the ODE system or the DAE1 system, an increase in speed by a factor 8 is achieved
(ODE* simulation time: 4, DAE1* simulation time: 4 and DAE2* simulation time: 0.5, see Table 7).

10
1

10
2

10
3

10
4

10
5

10
6

10
7

-real(?)

i
m
a
g
(
?
)

ODE
DAE1
DAE2

SH+ Sh2

Figure 1. The eigenvalues of the linearised systems. Note the logarithmic scale and that small the
values are not shown (x-axis: –real(λ), y-axis: im(λ)).

9. REFERENCES
Batstone D.J., Keller J., Angelidaki I., Kalyuzhnyi S.V., Pavlostathis S.G., Rozzi A., Sanders W.T.M., Siegrist

H. and Vavilin V.A. (2002). Anaerobic Digestion Model No. 1. IWA STR No. 13, IWA Publishing,
London, UK.

Copp J.B. (ed.) (2002). The COST Simulation Benchmark – Description and Simulator Manual. ISBN 92-894-
1658-0, Office for Official Publications of the European Communities, Luxembourg.

Gernaey K.V., Rosen C., Benedetti L. and Jeppsson U. (2005). Phenomenological modelling of wastewater treat-
ment plant influent disturbances scenarios. 10th International Conference on Urban Drainage (10ICUD),
21-26 August, Copenhagen, Denmark.

Gernaey K.V., Rosen C and Jeppsson U. (2006). WWTP dynamic disturbance modelling – An essential module
for long-term benchmarking development. Water Sci. Technol., 53(4-5), 225-234.

Henze M., Gujer W., Mino T. and van Loosdrecht M. (2000). Activated sludge models AMS1, ASM2, ASM2d
and ASM3. IWA STR No. 9, IWA Publishing, London, UK.

Jeppsson U., Rosen C., Alex J., Copp J.B., Gernaey K.V., Pons M.-N. and Vanrolleghem P.A. (2006). Towards a
benchmark simulation model for plant-wide control strategy performance evaluation of WWTPs. Water
Sci. Technol., 51(1), 287-295.

Jeppsson U., Pons M.-N., Nopens I., Alex J., Copp J.B., Gernaey K.V., Rosen C., Steyer J.-P. and Vanrolleghem
P.A. (2007). Benchmark Simulation Model No 2 – General protocol and exploratory case studies. Water
Sci. Technol., 56(8), 67-78.

Nopens I., Batstone D., Copp J.B., Jeppsson U., Volcke E.I.P., Alex J. and Vanrolleghem P.A. (2008). A
practical ASM/ADM model interface for enhanced dynamic plant-wide simulation. Water Res. (in
revision).

Rieger L., Alex J., Winkler S., Boehler M., Thomann M. and Siegrist H. (2003). Towards a benchmark
simulation model for plant-wide control strategy performance evaluation of WWTPs. Water Sci. Technol.,
47(2), 103-112.

Rosen C., Vrecko D., Gernaey K.V., Pons M.-N. and Jeppsson U. (2006). Implementing ADM1 for plant-wide
benchmark simulations in Matlab/Simulink. Water Sci. Technol., 54(4), 11-19.

Siegrist H., Vogt D., Garcia-Heras J.L. and Gujer W. (2002). Mathematical model for meso-and thermophilic
anaerobic digestion. Environ. Sci. Technol., 36, 1113-1123.

Takacs I.,Patry G.G. and Nolasco D. (1991). A dynamic model of the clarification-thinckening process. Water
Res., 25(10), 1263-1271.

Volcke E.I.P. (2006). Modelling, analysis and control of partial nitritation in a SHARON reactor. PhD thesis,
Ghent University, Belgium, pp. 300 (Section 3.4. pH calculation available at
http://biomath.ugent.be/publications/download/VolckeEveline_PhD.pdf).

Aspects on ADM1 Implementation within the BSM2 Framework

 25

Appendix 1. Code for ADM1 DAE implementation in Matlab/Simulink
In this appendix, the solvers for pH and Sh2 used in the Lund University implementation of ADM1 are presented.
The solver files are written in C for the Matlab/Simulink S-function utility. If used on this platform, they should
work just as they are presented below. If another platform is used, the reader should focus on the functions Equ
and gradEqu for calculation of the equations E(SX,k) and d E(SX,k)/dSX|SX,k, respectively, and the functions
pHsolver and Sh2solver, respectively, for the iteration (based on the Newton-Raphson algorithm) in order
to find the solution SX (index X here representing H+ or h2).

In the computer code below (Appendicies 1.1 and 1.2), parameter names should be self explanatory. For the
input variables the following translation table applies:
u[0] = Ssu u[1] = Saa u[2] = Sfa u[3] = Sva u[4] = Sbu u[5] = Spro

u[6] = Sac u[9] = SIC u[10] = SIN u[16] = Xsu u[17] = Xaa u[18] = Xfa

u[19] = Xc4 u[20] = Xpro u[22] = Xh2 u[24] = Scat u[25] = San u[26] = Qad

u[33] = pH u[34] = SH+ u[43] = Sgas,h2 u[51] = Sh2,i

For the state variables the following translation tables applies:
In pHsolver: x[0] = SH+ x[1] = Sva– x[2] = Sbu– x[3] = Spro– x[4] = Sac–

x[5] = Shco3– x[6] = Snh3

In Sh2solver: x[0] = Sh2

Appendix 1.1. C-file for pH solver
/*
 * pHsolv_bsm2.c is a C-file S-function level 2 that calculates the
 * algebraic equations for pH and ion states of the ADM1 model.
 * This solver is based on the implementation proposed by Dr Eveline
 * Volcke, BIOMATH, Ghent University, Belgium.
 * Computational speed could be further enhanced by sending all parameters
 * directly from the adm1 module
 * instead of recalculating them within this module.
 *
 * Copyright (2006):
 * Dr Christian Rosen, Dr Darko Vrecko and Dr Ulf Jeppsson
 * Dept. Industrial Electrical Engineering and Automation (IEA)
 * Lund University, Sweden
 * http://www.iea.lth.se/
 */

#define S_FUNCTION_NAME pHsolv_bsm2
#define S_FUNCTION_LEVEL 2
#include "simstruc.h"
#include <math.h>
#define XINIT(S) ssGetSFcnParam(S,0)
#define PAR(S) ssGetSFcnParam(S,1)

/*
 * mdlInitializeSizes:
 * The sizes information is used by Simulink to determine the S-function
 * block's characteristics (number of inputs, outputs, states, etc.).
 */
static void mdlInitializeSizes(SimStruct *S)
{
 ssSetNumSFcnParams(S, 2); /* Number of expected parameters */
 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
 /* Return if number of expected != number of actual parameters */
 return;
}
 ssSetNumContStates(S, 0);
 ssSetNumDiscStates(S, 7);

Aspects on ADM1 Implementation within the BSM2 Framework

 26

 if (!ssSetNumInputPorts(S, 1)) return;
 ssSetInputPortWidth(S, 0, 51); /*(S, port index, port width)*/
 ssSetInputPortDirectFeedThrough(S, 0, 0);
 if (!ssSetNumOutputPorts(S, 1)) return;
 ssSetOutputPortWidth(S, 0, 7);
 ssSetNumSampleTimes(S, 1);
 ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);
}

/*
 * mdlInitializeSampleTimes:
 * This function is used to specify the sample time(s) for your
 * S-function. You must register the same number of sample times as
 * specified in ssSetNumSampleTimes.
 */
static void mdlInitializeSampleTimes(SimStruct *S)
{
 ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);
 /* executes whenever driving block executes */
 ssSetOffsetTime(S, 0, 0.0);
}

#define MDL_INITIALIZE_CONDITIONS /* Change to #undef to remove function */
#if defined(MDL_INITIALIZE_CONDITIONS)
/* mdlInitializeConditions:
 * In this function, you should initialize the continuous and discrete
 * states for your S-function block. The initial states are placed
 * in the state vector, ssGetContStates(S) or ssGetRealDiscStates(S).
 * You can also perform any other initialization activities that your
 * S-function may require. Note, this routine will be called at the
 * start of simulation and if it is present in an enabled subsystem
 * configured to reset states, it will be call when the enabled subsystem
 * restarts execution to reset the states.
 */
static void mdlInitializeConditions(SimStruct *S)
{
 real_T *x0 = ssGetDiscStates(S); /* x0 is pointer */
 int_T i;

 for (i = 0;i < 7; i++) {
 x0[i] = mxGetPr(XINIT(S))[i];
 }
}
#endif /* MDL_INITIALIZE_CONDITIONS */

#undef MDL_START /* Change to #undef to remove function */
#if defined(MDL_START)
/* mdlStart:
 * This function is called once at start of model execution. If you
 * have states that should be initialized once, this is the place
 * to do it.
 */
static void mdlStart(SimStruct *S)
{
}
#endif /* MDL_START */

/*
 * mdlOutputs
 * In this function, you compute the outputs of your S-function
 * block. Generally outputs are placed in the output vector, ssGetY(S).
 */
static void mdlOutputs(SimStruct *S, int_T tid)

Aspects on ADM1 Implementation within the BSM2 Framework

 27

{
 real_T *y = ssGetOutputPortRealSignal(S,0);
 real_T *x = ssGetDiscStates(S);
 int_T i;

 for (i = 0; i < 7; i++) {
 y[i] = x[i]; /* state variables are passed on as output variables */
 }
}

static real_T Equ(SimStruct *S)
{
 real_T *x = ssGetDiscStates(S);
 InputRealPtrsType u = ssGetInputPortRealSignalPtrs(S,0);

 static real_T K_w, pK_w_base, K_a_va, pK_a_va_base, K_a_bu,
 pK_a_bu_base, K_a_pro, pK_a_pro_base, K_a_ac, pK_a_ac_base, K_a_co2,
 pK_a_co2_base, K_a_IN, pK_a_IN_base, T_base, T_op, R, factor;

 R = mxGetPr(PAR(S))[77];
 T_base = mxGetPr(PAR(S))[78];
 T_op = mxGetPr(PAR(S))[79];
 pK_w_base = mxGetPr(PAR(S))[80];
 pK_a_va_base = mxGetPr(PAR(S))[81];
 pK_a_bu_base = mxGetPr(PAR(S))[82];
 pK_a_pro_base = mxGetPr(PAR(S))[83];
 pK_a_ac_base = mxGetPr(PAR(S))[84];
 pK_a_co2_base = mxGetPr(PAR(S))[85];
 pK_a_IN_base = mxGetPr(PAR(S))[86];

 factor = (1.0/T_base - 1.0/T_op)/(100.0*R);
 K_w = pow(10,-pK_w_base)*exp(55900.0*factor); /* T adjustment for K_w */
 K_a_va = pow(10,-pK_a_va_base);
 K_a_bu = pow(10,-pK_a_bu_base);
 K_a_pro = pow(10,-pK_a_pro_base);
 K_a_ac = pow(10,-pK_a_ac_base);
 K_a_co2 = pow(10,-pK_a_co2_base)*exp(7646.0*factor); /* T adjustment
 for K_a_co2 */
 K_a_IN = pow(10,-pK_a_IN_base)*exp(51965.0*factor); /* T adjustment
 for K_a_IN */
 x[1] = K_a_va**u[3]/(K_a_va+x[0]); /* Sva- */
 x[2] = K_a_bu**u[4]/(K_a_bu+x[0]); /* Sbu- */
 x[3] = K_a_pro**u[5]/(K_a_pro+x[0]); /* Spro- */
 x[4] = K_a_ac**u[6]/(K_a_ac+x[0]); /* Sac- */
 x[5] = K_a_co2**u[9]/(K_a_co2+x[0]); /* SHCO3- */
 x[6] = K_a_IN**u[10]/(K_a_IN+x[0]); /* SNH3 */

 return *u[24]+(*u[10]-x[6])+x[0]-x[5]-x[4]/64-x[3]/112-x[2]/160-
 x[1]/208-K_w/x[0]-*u[25]; /* SH+ equation */
}

static real_T gradEqu(SimStruct *S)
{
 real_T *x = ssGetDiscStates(S);
 InputRealPtrsType u = ssGetInputPortRealSignalPtrs(S,0);

 static real_T K_w, pK_w_base, K_a_va, pK_a_va_base, K_a_bu,
 pK_a_bu_base, K_a_pro, pK_a_pro_base, K_a_ac, pK_a_ac_base, K_a_co2,
 pK_a_co2_base, K_a_IN, pK_a_IN_base, T_base, T_op, R, factor;

 R = mxGetPr(PAR(S))[77];
 T_base = mxGetPr(PAR(S))[78];
 T_op = mxGetPr(PAR(S))[79];

Aspects on ADM1 Implementation within the BSM2 Framework

 28

 pK_w_base = mxGetPr(PAR(S))[80];
 pK_a_va_base = mxGetPr(PAR(S))[81];
 pK_a_bu_base = mxGetPr(PAR(S))[82];
 pK_a_pro_base = mxGetPr(PAR(S))[83];
 pK_a_ac_base = mxGetPr(PAR(S))[84];
 pK_a_co2_base = mxGetPr(PAR(S))[85];
 pK_a_IN_base = mxGetPr(PAR(S))[86];

 factor = (1.0/T_base - 1.0/T_op)/(100.0*R);
 K_w = pow(10,-pK_w_base)*exp(55900.0*factor); /* T adjustment for K_w */
 K_a_va = pow(10,-pK_a_va_base);
 K_a_bu = pow(10,-pK_a_bu_base);
 K_a_pro = pow(10,-pK_a_pro_base);
 K_a_ac = pow(10,-pK_a_ac_base);
 K_a_co2 = pow(10,-pK_a_co2_base)*exp(7646.0*factor); /* T adjustment

 for K_a_co2 */
 K_a_IN = pow(10,-pK_a_IN_base)*exp(51965.0*factor); /* T adjustment

 for K_a_IN */

 return 1+K_a_IN**u[10]/((K_a_IN+x[0])*(K_a_IN+x[0]))
 +K_a_co2**u[9]/((K_a_co2+x[0])*(K_a_co2+x[0]))
 +1/64.0*K_a_ac**u[6]/((K_a_ac+x[0])*(K_a_ac+x[0]))
 +1/112.0*K_a_pro**u[5]/((K_a_pro+x[0])*(K_a_pro+x[0]))
 +1/160.0*K_a_bu**u[4]/((K_a_bu+x[0])*(K_a_bu+x[0]))
 +1/208.0*K_a_va**u[3]/((K_a_va+x[0])*(K_a_va+x[0]))
 +K_w/(x[0]*x[0]);
 /* Gradient of SH+ equation */
}

static void pHsolver(SimStruct *S)
{
 real_T *x = ssGetDiscStates(S);

 static real_T delta;
 static real_T S_H_ion0;
 static int_T i;

 static const real_T TOL = 1e-12;
 static const real_T MaxSteps= 1000;

 S_H_ion0 = x[0]; /* SH+ */

 i = 1;
 delta = 1.0;

 /* Newton-Raphson algorithm */
 while ((delta > TOL || delta < -TOL) && (i <= MaxSteps)) {
 delta = Equ(S);
 x[0] = S_H_ion0 - delta/gradEqu(S); /* Calculate the new SH+ */

 if (x[0] <= 0) {
 x[0] = 1e-12; /* to avoid numerical problems */
 }

 S_H_ion0 = x[0];
 ++i;
 }
}

#define MDL_UPDATE /* Change to #undef to remove function */
#if defined(MDL_UPDATE)
/*
 * mdlUpdate:

Aspects on ADM1 Implementation within the BSM2 Framework

 29

 * This function is called once for every major integration time step.
 * Discrete states are typically updated here, but this function is useful
 * for performing any tasks that should only take place once per
 * integration step.
 */
static void mdlUpdate(SimStruct *S, int_T tid)
{
 pHsolver(S);
}
#endif /* MDL_UPDATE */

#undef MDL_DERIVATIVES /* Change to #undef to remove function */
#if defined(MDL_DERIVATIVES)
/*
 * mdlDerivatives:
 * In this function, you compute the S-function block's derivatives.
 * The derivatives are placed in the derivative vector, ssGetdX(S).
 */
static void mdlDerivatives(SimStruct *S)
{
}
#endif /* MDL_DERIVATIVES */

/*
 * mdlTerminate:
 * In this function, you should perform any actions that are necessary
 * at the termination of a simulation. For example, if memory was
 * allocated in mdlStart, this is the place to free it.
 */
static void mdlTerminate(SimStruct *S)
{
}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif

Aspects on ADM1 Implementation within the BSM2 Framework

 30

Appendix 1.2. C-file for Sh2 solver
/*
 * Sh2solv_bsm2.c is a C-file S-function level 2 that solves the algebraic
 * equation for Sh2 of the ADM1 model,
 * thereby reducing the stiffness of the system considerably (if used
 * together with a pHsolver).
 *
 * Copyright (2006):
 * Dr Christian Rosen, Dr Darko Vrecko and Dr Ulf Jeppsson
 * Dept. Industrial Electrical Engineering and Automation (IEA)
 * Lund University, Sweden
 * http://www.iea.lth.se/
 */

#define S_FUNCTION_NAME Sh2solv_bsm2
#define S_FUNCTION_LEVEL 2
#include "simstruc.h"
#include <math.h>
#define XINIT(S) ssGetSFcnParam(S,0)
#define PAR(S) ssGetSFcnParam(S,1)
#define V(S) ssGetSFcnParam(S,2)

/*
 * mdlInitializeSizes:
 * The sizes information is used by Simulink to determine the S-function
 * block's characteristics (number of inputs, outputs, states, etc.).
 */
static void mdlInitializeSizes(SimStruct *S)
{
 ssSetNumSFcnParams(S, 3); /* Number of expected parameters */
 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
 /* Return if number of expected != number of actual parameters */
 return;
}
 ssSetNumContStates(S, 0);
 ssSetNumDiscStates(S, 1);
 if (!ssSetNumInputPorts(S, 1)) return;
 ssSetInputPortWidth(S, 0, 52); /*(S, port index, port width)*/
 ssSetInputPortDirectFeedThrough(S, 0, 0);
 if (!ssSetNumOutputPorts(S, 1)) return;
 ssSetOutputPortWidth(S, 0, 1);
 ssSetNumSampleTimes(S, 1);
 ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);
}

/*
 * mdlInitializeSampleTimes:
 * This function is used to specify the sample time(s) for your
 * S-function. You must register the same number of sample times as
 * specified in ssSetNumSampleTimes.
 */
static void mdlInitializeSampleTimes(SimStruct *S)
{
 ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);
 /* executes whenever driving block executes */
 ssSetOffsetTime(S, 0, 0.0);
}

#define MDL_INITIALIZE_CONDITIONS /* Change to #undef to remove function */
#if defined(MDL_INITIALIZE_CONDITIONS)
/* mdlInitializeConditions:

Aspects on ADM1 Implementation within the BSM2 Framework

 31

 * In this function, you should initialize the continuous and discrete
 * states for your S-function block. The initial states are placed
 * in the state vector, ssGetContStates(S) or ssGetRealDiscStates(S).
 * You can also perform any other initialization activities that your
 * S-function may require. Note, this routine will be called at the
 * start of simulation and if it is present in an enabled subsystem
 * configured to reset states, it will be call when the enabled subsystem
 * restarts execution to reset the states.
 */
static void mdlInitializeConditions(SimStruct *S)
{
 real_T *x0 = ssGetDiscStates(S); /*x0 is pointer*/

 x0[0] = mxGetPr(XINIT(S))[0];
}
#endif /* MDL_INITIALIZE_CONDITIONS */

#undef MDL_START /* Change to #undef to remove function */
#if defined(MDL_START)
/* mdlStart:
 * This function is called once at start of model execution. If you
 * have states that should be initialized once, this is the place
 * to do it.
 */
static void mdlStart(SimStruct *S)
{
}
#endif /* MDL_START */

/*
 * mdlOutputs
 * In this function, you compute the outputs of your S-function
 * block. Generally outputs are placed in the output vector, ssGetY(S).
 */
static void mdlOutputs(SimStruct *S, int_T tid)
{
 real_T *y = ssGetOutputPortRealSignal(S,0);
 real_T *x = ssGetDiscStates(S);

 y[0] = x[0]; /* state variable is passed on as output variable */
}

static real_T Equ(SimStruct *S)
{
 real_T *x = ssGetDiscStates(S);
 InputRealPtrsType u = ssGetInputPortRealSignalPtrs(S,0);

 static real_T eps, f_h2_su, Y_su, f_h2_aa, Y_aa, Y_fa, Y_c4, Y_pro,
 K_S_IN, k_m_su, K_S_su, pH_UL_aa, pH_LL_aa, k_m_aa;
 static real_T K_S_aa, k_m_fa, K_S_fa, K_Ih2_fa, k_m_c4, K_S_c4,
 K_Ih2_c4, k_m_pro, K_S_pro, K_Ih2_pro;
 static real_T pH_UL_ac, pH_LL_ac, k_m_h2, K_S_h2, pH_UL_h2, pH_LL_h2,
 R, T_base, T_op, kLa, K_H_h2, K_H_h2_base, V_liq, pH_op,I_pH_aa;
 static real_T I_pH_h2, I_IN_lim, I_h2_fa, I_h2_c4, I_h2_pro, inhib[6];
 static real_T proc5, proc6, proc7, proc8, proc9, proc10, proc12,
 p_gas_h2, procT8, reac8;
 static real_T pHLim_aa, pHLim_h2, a_aa, a_h2, S_H_ion, n_aa, n_h2;

 eps = 0.000001;

 f_h2_su = mxGetPr(PAR(S))[18];
 Y_su = mxGetPr(PAR(S))[27];
 f_h2_aa = mxGetPr(PAR(S))[28];

Aspects on ADM1 Implementation within the BSM2 Framework

 32

 Y_aa = mxGetPr(PAR(S))[34];
 Y_fa = mxGetPr(PAR(S))[35];
 Y_c4 = mxGetPr(PAR(S))[36];
 Y_pro = mxGetPr(PAR(S))[37];
 K_S_IN = mxGetPr(PAR(S))[45];
 k_m_su = mxGetPr(PAR(S))[46];
 K_S_su = mxGetPr(PAR(S))[47];
 pH_UL_aa = mxGetPr(PAR(S))[48];
 pH_LL_aa = mxGetPr(PAR(S))[49];
 k_m_aa = mxGetPr(PAR(S))[50];
 K_S_aa = mxGetPr(PAR(S))[51];
 k_m_fa = mxGetPr(PAR(S))[52];
 K_S_fa = mxGetPr(PAR(S))[53];
 K_Ih2_fa = mxGetPr(PAR(S))[54];
 k_m_c4 = mxGetPr(PAR(S))[55];
 K_S_c4 = mxGetPr(PAR(S))[56];
 K_Ih2_c4 = mxGetPr(PAR(S))[57];
 k_m_pro = mxGetPr(PAR(S))[58];
 K_S_pro = mxGetPr(PAR(S))[59];
 K_Ih2_pro = mxGetPr(PAR(S))[60];
 pH_UL_ac = mxGetPr(PAR(S))[64];
 pH_LL_ac = mxGetPr(PAR(S))[65];
 k_m_h2 = mxGetPr(PAR(S))[66];
 K_S_h2 = mxGetPr(PAR(S))[67];
 pH_UL_h2 = mxGetPr(PAR(S))[68];
 pH_LL_h2 = mxGetPr(PAR(S))[69];
 R = mxGetPr(PAR(S))[77];
 T_base = mxGetPr(PAR(S))[78];
 T_op = mxGetPr(PAR(S))[79];
 kLa = mxGetPr(PAR(S))[94];
 K_H_h2_base = mxGetPr(PAR(S))[98];
 V_liq = mxGetPr(V(S))[0];

 K_H_h2 = K_H_h2_base*exp(-4180.0*(1.0/T_base - 1.0/T_op)/(100.0*R));
 /* T adjustment for K_H_h2 */

 pH_op = *u[33]; /* pH */
 S_H_ion = *u[34]; /* SH+ */

/* Hill function on SH+ used within BSM2, ADM1 Workshop, Copenhagen 2005. */
 pHLim_aa = pow(10,(-(pH_UL_aa + pH_LL_aa)/2.0));
 pHLim_h2 = pow(10,(-(pH_UL_h2 + pH_LL_h2)/2.0));
 n_aa=3.0/(pH_UL_aa-pH_LL_aa);
 n_h2=3.0/(pH_UL_h2-pH_LL_h2);
 I_pH_aa = pow(pHLim_aa,n_aa)/(pow(S_H_ion,n_aa)+pow(pHLim_aa ,n_aa));
 I_pH_h2 = pow(pHLim_h2,n_h2)/(pow(S_H_ion,n_h2)+pow(pHLim_h2 ,n_h2));

 I_IN_lim = 1.0/(1.0+K_S_IN/(*u[10]));
 I_h2_fa = 1.0/(1.0+x[0]/K_Ih2_fa);
 I_h2_c4 = 1.0/(1.0+x[0]/K_Ih2_c4);
 I_h2_pro = 1.0/(1.0+x[0]/K_Ih2_pro);

 inhib[0] = I_pH_aa*I_IN_lim;
 inhib[1] = inhib[0]*I_h2_fa;
 inhib[2] = inhib[0]*I_h2_c4;
 inhib[3] = inhib[0]*I_h2_pro;
 inhib[5] = I_pH_h2*I_IN_lim;

 proc5 = k_m_su**u[0]/(K_S_su+*u[0])**u[16]*inhib[0];
 proc6 = k_m_aa**u[1]/(K_S_aa+*u[1])**u[17]*inhib[0];
 proc7 = k_m_fa**u[2]/(K_S_fa+*u[2])**u[18]*inhib[1];
 proc8 =
 k_m_c4**u[3]/(K_S_c4+*u[3])**u[19]**u[3]/(*u[3]+*u[4]+eps)*inhib[2];

Aspects on ADM1 Implementation within the BSM2 Framework

 33

 proc9 =
 k_m_c4**u[4]/(K_S_c4+*u[4])**u[19]**u[4]/(*u[3]+*u[4]+eps)*inhib[2];
 proc10 = k_m_pro**u[5]/(K_S_pro+*u[5])**u[20]*inhib[3];
 proc12 = k_m_h2*x[0]/(K_S_h2+x[0])**u[22]*inhib[5];

 p_gas_h2 = *u[43]*R*T_op/16.0;
 procT8 = kLa*(x[0]-16.0*K_H_h2*p_gas_h2);

 reac8 = (1.0-Y_su)*f_h2_su*proc5+(1.0-Y_aa)*f_h2_aa*proc6+(1.0-
 Y_fa)*0.3*proc7+(1.0-Y_c4)*0.15*proc8+(1.0-Y_c4)*0.2*proc9+(1.0-
 Y_pro)*0.43*proc10-proc12-procT8;

 return 1/V_liq**u[26]*(*u[51]-x[0])+reac8; /* Sh2 equation */
}

static real_T gradEqu(SimStruct *S)
{
 real_T *x = ssGetDiscStates(S);
 InputRealPtrsType u = ssGetInputPortRealSignalPtrs(S,0);

 static real_T eps, f_h2_su, Y_su, f_h2_aa, Y_aa, Y_fa, Y_c4, Y_pro,
 K_S_IN, k_m_su, K_S_su, pH_UL_aa, pH_LL_aa, k_m_aa;
 static real_T K_S_aa, k_m_fa, K_S_fa, K_Ih2_fa, k_m_c4, K_S_c4,
 K_Ih2_c4, k_m_pro, K_S_pro, K_Ih2_pro;
 static real_T pH_UL_ac, pH_LL_ac, k_m_h2, K_S_h2, pH_UL_h2, pH_LL_h2,
 R, T_base, T_op, kLa, K_H_h2, K_H_h2_base, V_liq, pH_op, I_pH_aa,
 I_pH_h2;
 static real_T pHLim_aa, pHLim_h2, a_aa, a_h2, S_H_ion, n_aa, n_h2;

 eps = 0.000001;

 f_h2_su = mxGetPr(PAR(S))[18];
 Y_su = mxGetPr(PAR(S))[27];
 f_h2_aa = mxGetPr(PAR(S))[28];
 Y_aa = mxGetPr(PAR(S))[34];
 Y_fa = mxGetPr(PAR(S))[35];
 Y_c4 = mxGetPr(PAR(S))[36];
 Y_pro = mxGetPr(PAR(S))[37];
 K_S_IN = mxGetPr(PAR(S))[45];
 k_m_su = mxGetPr(PAR(S))[46];
 K_S_su = mxGetPr(PAR(S))[47];
 pH_UL_aa = mxGetPr(PAR(S))[48];
 pH_LL_aa = mxGetPr(PAR(S))[49];
 k_m_aa = mxGetPr(PAR(S))[50];
 K_S_aa = mxGetPr(PAR(S))[51];
 k_m_fa = mxGetPr(PAR(S))[52];
 K_S_fa = mxGetPr(PAR(S))[53];
 K_Ih2_fa = mxGetPr(PAR(S))[54];
 k_m_c4 = mxGetPr(PAR(S))[55];
 K_S_c4 = mxGetPr(PAR(S))[56];
 K_Ih2_c4 = mxGetPr(PAR(S))[57];
 k_m_pro = mxGetPr(PAR(S))[58];
 K_S_pro = mxGetPr(PAR(S))[59];
 K_Ih2_pro = mxGetPr(PAR(S))[60];
 pH_UL_ac = mxGetPr(PAR(S))[64];
 pH_LL_ac = mxGetPr(PAR(S))[65];
 k_m_h2 = mxGetPr(PAR(S))[66];
 K_S_h2 = mxGetPr(PAR(S))[67];
 pH_UL_h2 = mxGetPr(PAR(S))[68];
 pH_LL_h2 = mxGetPr(PAR(S))[69];
 R = mxGetPr(PAR(S))[77];
 T_base = mxGetPr(PAR(S))[78];
 T_op = mxGetPr(PAR(S))[79];

Aspects on ADM1 Implementation within the BSM2 Framework

 34

 kLa = mxGetPr(PAR(S))[94];
 K_H_h2_base = mxGetPr(PAR(S))[98];
 V_liq = mxGetPr(V(S))[0];

 K_H_h2 = K_H_h2_base*exp(-4180.0*(1.0/T_base - 1.0/T_op)/(100.0*R));
 /* T adjustment for K_H_h2 */

 pH_op = *u[33]; /* pH */
 S_H_ion = *u[34]; /* SH+ */

/* Hill function on SH+ used within BSM2, ADM1 Workshop, Copenhagen 2005. */
 pHLim_aa = pow(10,(-(pH_UL_aa + pH_LL_aa)/2.0));
 pHLim_h2 = pow(10,(-(pH_UL_h2 + pH_LL_h2)/2.0));
 n_aa=3.0/(pH_UL_aa-pH_LL_aa);
 n_h2=3.0/(pH_UL_h2-pH_LL_h2);
 I_pH_aa = pow(pHLim_aa,n_aa)/(pow(S_H_ion,n_aa)+pow(pHLim_aa ,n_aa));
 I_pH_h2 = pow(pHLim_h2,n_h2)/(pow(S_H_ion,n_h2)+pow(pHLim_h2 ,n_h2));

 /* Gradient of Sh2 equation */
 return -1/V_liq**u[26]-3.0/10.0*(1-Y_fa)*k_m_fa**u[2]/(K_S_fa+*u[2])
 **u[18]*I_pH_aa/(1+K_S_IN/(*u[10]))/((1+x[0]/K_Ih2_fa)
 (1+x[0]/K_Ih2_fa))/K_Ih2_fa-3.0/20.0(1-Y_c4)*k_m_c4**u[3]**u[3]
 /(K_S_c4+*u[3])**u[19]/(*u[4]+*u[3]+eps)*I_pH_aa/(1+K_S_IN/(*u[10]))
 /((1+x[0]/K_Ih2_c4)*(1+x[0]/K_Ih2_c4))/K_Ih2_c4-1.0/5.0*(1-
 Y_c4)*k_m_c4**u[4]**u[4]/(K_S_c4+*u[4])**u[19]/(*u[4]+*u[3]+eps)
 *I_pH_aa/(1+K_S_IN/(*u[10]))/((1+x[0]/K_Ih2_c4)*(1+x[0]/K_Ih2_c4))
 /K_Ih2_c4-43.0/100.0*(1-Y_pro)*k_m_pro**u[5]/(K_S_pro+*u[5])**u[20]
 *I_pH_aa/(1+K_S_IN/(*u[10]))/((1+x[0]/K_Ih2_pro)*(1+x[0]/K_Ih2_pro))
 /K_Ih2_pro-k_m_h2/(K_S_h2+x[0])**u[22]*I_pH_h2/(1+K_S_IN/(*u[10]))
 +k_m_h2*x[0]/((K_S_h2+x[0])*(K_S_h2+x[0]))**u[22]*I_pH_h2
 /(1+K_S_IN/(*u[10]))-kLa;
}

static void Sh2solver(SimStruct *S)
{

 real_T *x = ssGetDiscStates(S);

 static real_T delta;
 static real_T Sh20;
 static int_T i;
 static const real_T TOL = 1e-12;
 static const real_T MaxSteps= 1000;

 Sh20 = x[0]; /* Sh2 */

 i = 1;
 delta = 1.0;

 /* Newton-Raphson algorithm */
 while ((delta > TOL || delta < -TOL) && (i <= MaxSteps)) {
 delta = Equ(S);
 x[0] = Sh20-delta/gradEqu(S); /* Calculate the new Sh2 */

 if (x[0] <= 0) {
 x[0] = 1e-12; /* to avoid numerical problems */
 }

 Sh20 = x[0];
 ++i;
 }
}

Aspects on ADM1 Implementation within the BSM2 Framework

 35

#define MDL_UPDATE /* Change to #undef to remove function */
#if defined(MDL_UPDATE)
/*
 * mdlUpdate:
 * This function is called once for every major integration time step.
 * Discrete states are typically updated here, but this function is useful
 * for performing any tasks that should only take place once per
 * integration step.
 */
static void mdlUpdate(SimStruct *S, int_T tid)
{
 Sh2solver(S);
}
#endif /* MDL_UPDATE */

#undef MDL_DERIVATIVES /* Change to #undef to remove function */
#if defined(MDL_DERIVATIVES)
/*
 * mdlDerivatives:
 * In this function, you compute the S-function block's derivatives.
 * The derivatives are placed in the derivative vector, ssGetdX(S).
 */
static void mdlDerivatives(SimStruct *S)
{
}
#endif /* MDL_DERIVATIVES */

/*
 * mdlTerminate:
 * In this function, you should perform any actions that are necessary
 * at the termination of a simulation. For example, if memory was
 * allocated in mdlStart, this is the place to free it.
 */
static void mdlTerminate(SimStruct *S)
{
}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif

Aspects on ADM1 Implementation within the BSM2 Framework

 36

Appendix 2. Petersen matrix representation of original ADM1
The complete Petersen matrix describing the liquid phase reactions in the original ADM1 is shown below (from Batstone et al., 2002).

Table 8: Biochemical rate coefficients (νi,j) and kinetic equations (ρi,j) for soluble components (i = 1–12, j = 1–19)

Aspects on ADM1 Implementation within the BSM2 Framework

 37

Table 9: Biochemical rate coefficients (νi,j) and kinetic equations (ρi,j) for particulate components (i = 13–24, j = 1–19)

