Power Electronics (EIEN25) Exercises with Solutions

1. Exercises on Mlodulation
2. Exercises on Current Control
3. Exercises on Speed Control
4. Exercises on Electrical machine basic
5. Exercises on PMSM
6. Old exams

Exam 2012-05-21
Exam 2014-05-30
Exam 2017-05-30

Exercises on Modulation

Exercise 1.1 2QC Buck converter no resistance

- Determine
- Phase voltages incl graphs
- Dclink current incl graphs
- Power at P1, P2, P3 and P4

Data for the Buck converter

U_{D}	300 V
e	100 V
L	2 mH
R	0 ohm
F_{s} (switch- freq)	3.33 kHz
$\mathrm{i}_{\text {avg }}$ (constant)	10 A

Solution 1.1

- Calculation steps

1. Duty cycle
2. Phase current ripple, at positive or negative current slope. Max and min current
1) $U_{\text {phase_avg }}=e+R \cdot i_{\text {avg }}=100+0=100 \mathrm{~V}$

Duty $_{\text {cycle }}=\frac{U_{\text {phase_avg }}}{U_{d}}=\frac{100}{300}=0.33$
3. Phase current graph, phase voltage graph and dclink current graph
2) Current ripple, max and min current
4. Average current and average voltage at p1, p2, p3 and p4
5. Power at p1, p2, p3 and p4

$$
\begin{aligned}
& I_{\text {ripple }}=\frac{\left(U_{d}-e\right)}{L} \cdot T_{\text {per }} \cdot \text { Duty }_{\text {cycle }}=\frac{(300-100)}{0.002} \cdot 0.0003 \cdot 0.33=10 \mathrm{~A} \\
& I_{\min }=I_{\text {avg }}-0.5 \cdot I_{\text {ripple }}=5 \mathrm{~A} \\
& I_{\max }=I_{\text {avg }}+0.5 \cdot I_{\text {ripple }}=15 \mathrm{~A}
\end{aligned}
$$

Solution 1.1

3. The modulation $=1$ during 33% of the period time(the duty cycle), and =0 the rest of the time.
The phase voltage = the modulation times the UD.
The phase current increases from 5 A to 15 A while the modulation =1, and returns from 15 A back to 5 A when the modulation $=0$.

Solution 1.1

4. Average current and average voltage at
p1, p2, p3 and p4
At $P_{1}\left\{\begin{array}{l}\text { Cons taht current } I_{\text {const1 }}=I_{\text {avg_dclink_current }}=\text { duty cycle } \cdot I_{\text {avg_ }} \text { phase_current } \\ \text { Cons } \tan t \text { voltage } U_{D}=\end{array}\right.$
At $P_{2}\left\{\begin{array}{l}\text { Average dc link current } I_{\text {avg } 2}=I_{\text {avg_dclink_current }}=\text { duty cycle } \cdot I_{\text {avg_phase_current }}=3.33 \mathrm{~A} \\ \text { Cons } \tan t \text { voltage } U_{D}=\end{array}\right.$
At $P_{3} \begin{cases}\text { Average dc link current } I_{\text {avg } 3}=I_{\text {avg_ }} \text { phase_current } \\ \text { Average voltage } U_{\text {avg } 3}=\text { duty cycle } \cdot U_{D}= & 10 \mathrm{~A} \\ \text { Aver }\end{cases}$
At $P_{4}\left\{\begin{array}{l}\text { Average dc link current } I_{\text {avg } 4}=I_{\text {avg }}^{- \text {phase_current }} \\ \text { Cons } \tan t \text { voltage } e=\end{array}\right.$ 10 A 100 V
5. Power at P1, P2, P3 and P4
$\begin{cases}\text { Power } P_{1}=U_{d} \cdot I_{\text {const } 1} & =1 \mathrm{~kW} \\ \text { Power } P_{2}=U_{d} \cdot I_{\text {avg } 2} & =1 \mathrm{~kW} \\ \text { Power } P_{3}=U_{\text {avg } 3} \cdot I_{\text {avg } 3} & =1 \mathrm{~kW} \\ \text { Power } P_{4}=e \cdot I_{\text {avg } 4} & =1 \mathrm{~kW}\end{cases}$

Exercise 1.2 1QC Buck converter with resistance

- Determine
- Phase voltages incl graphs
- DC-link current incl graphs
- Power at P1, P2, and P3

Data for the Buck converter
$\mathrm{U}_{\mathrm{D}} \quad 300 \mathrm{~V}$
e
L
R
F_{s} (switch- freq)
$\mathrm{i}_{\text {avg }}$ (constant)
100 V
very large
1 ohm
3.33 kHz

10 A

Solution 1.2

Calculation steps

1. Avg phase voltage
2. Duty cycle
3. Phase current. Ripple and min and max current
4. Phase current graph, phase voltage graph and dclink current graph
5. Average current and average voltage at $p_{1,} p_{2}$ and p_{3}
6. Power at $p_{1,} p_{2}$ and p_{3}
1) Avg phase voltage
$U_{\text {phase_avg }}=e+R \cdot i_{\text {avg }}=100+1 \cdot 10=110 \mathrm{~V}$
2) Duty cycle

$$
\text { Duty }_{\text {cycle }}=\frac{U_{\text {phase_avg }}}{U_{d}}=\frac{110}{300}=0.37
$$

Solution 1.2

3) Phase current. Ripple and min and max current

$$
\begin{aligned}
& I_{\text {ripple }}=\frac{\left(U_{d}-R \cdot i_{\text {avg }}-e\right)}{\infty} \cdot \frac{1}{F_{s}} \cdot \text { Duty }_{\text {cycle }}=0.0 A \\
& I_{\min }=I_{\text {avg }}=10 \mathrm{~A} \\
& I_{\max }=I_{\text {avg }}=10 \mathrm{~A}
\end{aligned}
$$

4) Phase current graph, phase voltage graph and dclink current graph

$$
I_{\text {phase }}(t)=\{\text { Lis high, a straight line }\}=10 A
$$

Solution 1.2

5) Average current and average voltage at $p_{1,} p_{2}$ and p_{3}

$$
\left\{\begin{array} { l }
{ I _ { \text { avg } _ { - } P _ { 1 } } = \text { duty cycle } \cdot 1 0 \mathrm { A } = 3 . 7 A } \\
{ I _ { \text { avg } _ { - } P _ { 2 } } = 1 0 \mathrm { A } } \\
{ I _ { \text { avg } _ { - } P _ { 3 } } = 1 0 \mathrm { A } }
\end{array} \left\{\begin{array}{l}
U_{\text {avg }} P_{1}=300 \mathrm{~V} \\
U_{a v g_{-} P_{2}}=110 \mathrm{~V} \\
U_{a v g_{-} P_{3}}=100 \mathrm{~V}
\end{array}\right.\right.
$$

6) Power at $p_{1,} p_{2}$ and p_{3}

$$
\left\{\begin{array}{l}
P_{p 1}=U_{d} \cdot I_{a v g}=300 \cdot 3.7=1.1 \mathrm{~kW} \\
P_{p 2}=U_{p h a s e _a v g} \cdot I_{a v g}=110 \cdot 10=1.1 \mathrm{~kW} \\
P_{p 3}=e \cdot I_{a v g}=100 \cdot 10=1 \mathrm{~kW}
\end{array}\right.
$$

Exercise 1.3 1QC Boost converter with resistance

- Determine
- Phase voltages incl graphs
- DC-link current incl graphs
- Power at P1, P2, and P3

Data for the Boost converter

U_{D}	300 V
e	100 V

L very large
$R \quad 1 \mathrm{ohm}$
F_{s} (switch- freq) $\quad 3.33 \mathrm{kHz}$
Deiavifeonstant) $\quad 10 \mathrm{~A}$
Phase voltages incl graphs
Dclink current incl graphs
Power at P_{1}, P_{2} and P_{β}

Solution 1.3

Calculation Steps

1. Avg phase voltage
2. Duty cycle
3. Phase current. Ripple and min and max current
4. Phase current graph, phase voltage graph and dclink current graph
5. Average current and average voltage at $p_{1,} p_{2}$ and p_{3}
6. Power at $p_{1,} p_{2}$ and p_{3}
1) $U_{\text {phass } _ \text {avg }}=e-R \cdot i_{\text {avg }}=100-1 \cdot 10=90 \mathrm{~V}$
2) Duty $_{\text {cycle }}=\frac{U_{\text {phaseavg }}}{U_{d}}=\frac{90}{300}=0.30$

Solution 1.3

3) Phase current. Ripple and min and max current

$$
\left\{\begin{array}{l}
I_{\text {ripple }}=\frac{\left(U_{d}+R \cdot i_{\text {avg }}-e\right)}{\infty} \cdot \frac{1}{F_{s}} \cdot D u t y_{\text {cycle }}=0.0 \mathrm{~A} \\
I_{\min }=I_{\text {avg }}-0.5 \cdot I_{\text {ripple }}=10 \mathrm{~A} \\
I_{\max }=I_{\text {avg }}+0.5 \cdot I_{\text {ripple }}=10 \mathrm{~A}
\end{array}\right.
$$

4) Phase current graph, phase voltage graph and dclink current graph

Solution 1.3

5) Average current and average voltage at $p_{1,} p_{2}$ and p_{3}

$$
\left\{\begin{array} { l }
{ I _ { \text { avg } _ { - } P _ { 1 } } = \text { duty cycle } \cdot 1 0 \mathrm { A } = 3 . 0 \mathrm { A } } \\
{ I _ { \text { avg } P _ { 2 } } = 1 0 \mathrm { A } } \\
{ I _ { \text { avg } _ { - } P _ { 3 } } = 1 0 \mathrm { A } }
\end{array} \left\{\begin{array}{l}
U_{\text {avg }_{-} P_{1}}=300 \mathrm{~V} \\
U_{\text {avg }_{-} P_{2}}=90 \mathrm{~V} \\
U_{\text {avg }_{-} P_{3}}=100 \mathrm{~V}
\end{array}\right.\right.
$$

6) Power at $p_{1,} p_{2}$ and p_{3}

$$
\left\{\begin{array}{l}
P_{p 1}=U_{d} \cdot I_{\text {avg }} \cdot \text { Duty }_{\text {cycle }}=300 \cdot 10 \cdot 0.3=0.9 \mathrm{~kW} \\
P_{p 2}=U_{\text {avg }} \cdot I_{\text {avg }}=90 \cdot 10=0.9 \mathrm{~kW} \\
P_{p 3}=e \cdot I_{\text {avg }}=100 \cdot 10=1 \mathrm{~kW}
\end{array}\right.
$$

Exercise 1.4 1QC Boost converter no resistance

- Determine
- Phase voltages incl graphs
- DC-link current incl graphs
- Power at P_{1}, P_{2} and P_{3}

Data for the Boost converter	
U_{D}	300 V
e	100 V
L	2 mH
R	0 ohm
F_{s} (switch- freq)	3.33 kHz
$\mathrm{i}_{\text {avg }}$ (constant)	5 A

Solution 1.4

Calculation steps

1. Duty cycle
2. Phase current ripple, at positive or negative current slope.
3. Medium, max and min current
4. Phase current graph, phase voltage graph and dclink current graph
5. Average current voltage and power at $p_{1,} p_{2,} p_{3}$
1)

$$
\bar{u}=e-R \cdot i_{\text {avg }}=100+0=100 \mathrm{~V}
$$

DutyCycle $=\frac{\bar{u}}{U_{d}}=\frac{100}{300}=0.33$
2)
$\frac{d i}{d t}=\left\{\begin{array}{l}\frac{e-U_{d}}{L} \text { if Transistor OFF } \\ \frac{e}{L} \text { if Transistor ON }\end{array}\right.$

Solution 1.4

3) The current ripples between 0 and 10 A , with an average value of 5 A.
4) Phase current, Phase voltage and dclink current graph

Exercise 1.5 1QC Buck converter no resistance

- Determine
- Phase voltages incl graphs
- DC-clink current incl graphs
- Power at P_{1}, P_{2} and P_{3}

Calculation steps

1. Time for current to rise from 0 to $5 A$
2. Time for current to fall from 5 back to $0 A$
3. Phase voltage when transistor is off and current =0
4. Phase current, Phase voltage and dclink current graph
5. Average current and average voltage at p_{1}, p_{2} and p_{3}
6. Power at p_{1}, p_{2} and p_{3}

Data for the Buck converter
$\mathrm{U}_{\mathrm{D}} \quad 300 \mathrm{~V}$
e
L 2 mH
R
f_{s} (switch- freq) $\mathrm{i}_{\text {avg }}$ (constant)
3.33 kHz

5 A

Solution 1.5

1) Time for current to rise from 0 to 5 A

$$
T_{i g b t_{-} o n}=\frac{L}{e} \cdot \Delta i=\frac{0.002}{(300-100)} \cdot 5=50 \mu \mathrm{~s}
$$

2) Time for current to fall from 5 back to 0 A

$$
T_{\text {igbt_off }}=\frac{L}{e} \cdot \Delta i=\frac{0.002}{100} \cdot 5=100 \mu \mathrm{~s}
$$

Solution 1.5

3) Phase voltage when transistor is off current $=0$

When the current $=0$ the diode is not conducting, and as the transistor is off the phase voltage is "floating" and there is no voltage drop over the inductor.
Thus, the phase voltage $=100 \mathrm{~V}$
4. Phase current, Phase voltage and dclink current graph

Solution 1.5

5) Average current and average voltage at p_{1}, p_{2} and p_{3}

$$
\begin{aligned}
& \left\{\begin{array}{l}
U_{\text {avg }_{-} P_{1}}=U_{d}=300 \mathrm{~V} \\
U_{\text {avg }_{-} P_{2}}=\frac{(300 \cdot 50 \mu s+0 \cdot 100 \mu \mathrm{~s}+100 \cdot(300-50-100) \mu \mathrm{s})}{300 \mu \mathrm{~s}}=100 \mathrm{~V} \\
U_{\text {avg }_{-} P_{3}}=e=100 \mathrm{~V}
\end{array}\right. \\
& \left\{\begin{array}{l}
I_{\text {avg }_{-} P_{1}}=\frac{5 \cdot 50 \mu \mathrm{~s}}{2} \cdot \frac{1}{300 \mu \mathrm{~s}}=0.4167 \mathrm{~A} \\
I_{\text {avg }_{-} P_{2}}=\frac{5 \cdot 150 \mu \mathrm{~s}}{2} \cdot \frac{1}{300 \mu \mathrm{~s}}=1.25 \mathrm{~A} \\
I_{\text {avg }_{-} P_{3}}=I_{P_{2}}
\end{array}\right.
\end{aligned}
$$

6) Power at $p_{1,} p_{2}$ and p_{3}

$$
\left\{\begin{array}{l}
P_{P_{1}}=U_{d} \cdot I_{\text {avg }_{-} P_{1}}=300 \cdot 0.4167=125 \mathrm{~W} \\
P_{P_{2}}=U_{\text {avg }_{-} P_{2}} \cdot I_{\text {avg }}^{-} P_{2} \\
P_{P_{3}}=e \cdot I_{\text {avg }} P_{3}=100 \cdot 1.25=125 \mathrm{~W} \\
P_{3} \cdot 1.25=125 \mathrm{~W}
\end{array}\right.
$$

Exercise 1.6 4QC Bridge converter

- Determine
- Phase voltages incl graphs
- DC-link current incl graphs
- Power at P_{1}, P_{2} and P_{3}

Solution 1.6

Calculation steps

1. Duty cycle
2. Avg phase voltage
3. Phase current. Ripple and min and max current
4. Phase current graph, phase voltage graph and dclink current graph
5. Average current and average voltage at $p_{1,} p_{2}$ and p_{3}
6. Power at $p_{1,} p_{2}$ and p_{3}
1) duty $_{\text {cycle } 1}=1-$ Duty $_{\text {cycle }^{2}}$
$e=U_{d} \cdot$ duty $_{\text {cycle } _1}-U_{d} \cdot$ duty $_{\text {cycle }_{_2}}=U_{d} \cdot$ duty $_{\text {cycle }_{-1} 1}-U_{d} \cdot\left(1-\right.$ duty $\left._{\text {cycle }_{-} 1}\right)=$
$=U_{d} \cdot\left(2 \cdot\right.$ duty $\left._{\text {cycle }_{-} 1}-1\right)$
$\left\{\begin{array}{l}d u t y_{\text {cycle }_{-} 1}=\frac{1+\frac{e}{U_{d}}}{2}=\frac{1+\frac{100}{300}}{2}=0.6 \\ \text { duty }_{\text {cycle }_{-} 2}=1-\text { duty }_{\text {cycle }_{-1}}=0.33\end{array}\right.$

Solution 1.6

2) Avg phase voltage

$$
\left\{\begin{array}{l}
U_{\text {phase } 1-\text { avg }}=U_{d} \cdot d u t y_{\text {cycle } 1}=300 \cdot 0.67=200 \mathrm{~V} \\
U_{\text {phase } 2-a v g}=U_{d} \cdot \text { duty }_{\text {cycle }-2}=300 \cdot 0.33=100 \mathrm{~V}
\end{array}\right.
$$

Solution 1.6

3. Phase current. Ripple and min and max current

$$
\begin{aligned}
& V_{\text {phase }-1}= \begin{cases}0 & 0-50 \mu s \\
300 V & 50-250 \mu s \\
0 & 250-300 \mu s\end{cases} \\
& V_{\text {phase }-2}= \begin{cases}0 & 0-100 \mu s \\
300 V & 100-200 \mu s \\
0 & 200-300 \mu s\end{cases} \\
& V_{\text {bridge }}=V_{\text {phase_1 }}-V_{\text {phase }-2}= \begin{cases}0 & 0-50 \mu s \\
300 V & 50-100 \mu s \\
0 & 100-200 \mu s \\
300 V & 200-250 \mu s \\
0 & 250-300 \mu s\end{cases} \\
& I_{\text {ripple }}=\Delta I=\frac{U_{\text {bridge }}-e}{L} \cdot \Delta t=\frac{300-100}{0.002} \cdot 50 \mu s=5 \mathrm{~A} \\
& \left\{\begin{array}{l}
I_{\text {min }}=I_{\text {avg }}-0.5 \cdot I_{\text {ripple }}=7.5 \mathrm{~A} \\
I_{\text {max }}=I_{\text {avg }}+0.5 \cdot I_{\text {ripple }}=12.5 \mathrm{~A}
\end{array}\right.
\end{aligned}
$$

Solution 1.6

4) Phase current graph, phase voltage graph and dclink current graph

Solution 1.6

5. Average current and average voltage at $p_{1,} p_{2}$ and p_{3}

$$
\begin{aligned}
& \left\{\begin{array}{l}
I_{\text {avg }_{-} P_{1}}=\text { duty }_{\text {cycle }_{-1}-d u t y_{c y c l e}-2} \cdot 10 \mathrm{~A}=3.333 \mathrm{~A} \\
I_{\text {avg }_{-} P_{2}}=10 \mathrm{~A} \\
I_{\text {avg }_{-} P_{3}}=10 \mathrm{~A}
\end{array}\right. \\
& \left\{\begin{array}{l}
U_{\text {avg }_{-} P_{1}}=300 \mathrm{~V} \\
U_{\text {avg }_{-} P_{2}}=100 \mathrm{~V} \\
U_{\text {avg }_{-} P_{3}}=100 \mathrm{~V}
\end{array}\right.
\end{aligned}
$$

6. Power at $p_{1,} p_{2}$ and p_{3}

$$
\left\{\begin{array}{l}
P_{p 1}=U_{a v g_{-} p_{1}} \cdot I_{a v g_{-} p_{1}}=300 \cdot 3.333=1.0 \mathrm{~kW} \\
P_{p 2}=U_{a v g_{-} p_{2}} \cdot I_{a v g_{-} p_{2}}=100 \cdot 10=1.0 \mathrm{~kW} \\
P_{p 3}=U_{a v g_{-} p_{3}} \cdot I_{a v g_{-} p_{3}}=100 \cdot 10=1.0 \mathrm{~kW}
\end{array}\right.
$$

Exercise 1.7 4QC Bridge converter modulation

The resistance of the load is neglected, stationary state is assumed.

- The ouput voltage reference is:
a) $\boldsymbol{u}^{*}=U_{d c} 3$
b) $u^{*}=-U_{d c} / 3$
- The phase potential references are:
- $v_{a}{ }^{*}=u^{*} / 2$
- $v_{b}{ }^{*}=-u^{*} / 2$
- Draw the phase potentials $v_{a}(t)$ and $v_{b}(t)$ together with the output voltage $u(t)$ for cases a) and b) for two carrier wave periods!

Solution 1.7a Modulation with positive reference

Solution 1.7b Modulation with negative reference

Exercise 1.8 Symmetrized 3phase voltage

- The sinusoidal reference curves $\left(\mathrm{v}_{\mathrm{a}}{ }^{*}, \mathrm{v}_{\mathrm{b}}{ }^{*}, \mathrm{v}_{\mathrm{c}}{ }^{*}\right)$ for a three phase constant voltage converter can be modified with a zero-sequence signal:
- $v_{z}^{*}=[\max (a, b, c)+\min (a, b, c)] / 2$
according to the figure below.
- Determine the analytical expression for e.g. az in one of the 60° intervals!
- Determine the ratio between the maxima of the input and output signals!

Solution 1.8

The interval 0-60 deg is used (any such 60 degree can be used) Find the maximum in this interval.
$u_{a z, 0-60}=u_{a}-u_{z}=u_{a}-\left(\frac{u_{a}+u_{c}}{2}\right)=\frac{u_{a}}{2}-\frac{u_{c}}{2}=\frac{\cos (x)}{2}-\frac{\cos \left(x-\frac{4 \pi}{3}\right)}{2}$
$\frac{d u_{a z, 0-60}}{d x}=-\sin (x)+\sin \left(x-\frac{4 \pi}{3}\right)=\sin (x) \cdot \cos \left(\frac{4 \pi}{3}\right)-\cos (x) \cdot \sin \left(\frac{4 \pi}{3}\right)-\sin (x)=-\frac{3}{2} \cdot \sin (x)+\frac{\sqrt{3}}{2} \cdot \cos (x)$
$\frac{d u_{a z, 0-60}}{d x}=0 \Rightarrow \frac{3}{2} \cdot \sin (x)=\frac{\sqrt{3}}{2} \cdot \cos (x) \Rightarrow \tan (x)=\frac{2 \cdot \sqrt{3}}{2 \cdot 3}=\frac{1}{\sqrt{3}} \Rightarrow x=\frac{\pi}{6}=30^{\circ}$
Check if $\max \frac{d^{2} u_{a z, 0-60}}{d x^{2}}=-\frac{3}{2} \cdot \cos (x)-\frac{\sqrt{3}}{2} \cdot \sin (x)=\left\{x=\frac{\pi}{6}\right\}=-\frac{3 \sqrt{3}}{4}-\frac{\sqrt{3}}{4}<0 \Rightarrow \max$
$u_{a z, 0-60}\left(\frac{\pi}{6}\right)=\frac{\cos \left(\frac{\pi}{6}\right)}{2}-\frac{\cos \left(\frac{\pi}{6}-\frac{4 \pi}{3}\right)}{2}=\frac{\cos \left(\frac{\pi}{6}\right)-\cos \left(-\frac{7 \pi}{6}\right)}{2}=\frac{\frac{\sqrt{3}}{2}-\left(-\frac{\sqrt{3}}{2}\right)}{2}=\frac{\sqrt{3}}{2} \approx 0.866$
The quote between the input and the output signals $=\frac{1}{0.866}=1.155$

Exercise 1.9 Sinusoidal 3phase voltage

E.g.use Excel
 The following data are choosen.

Amplitude of the fundamental voltage
The fundamental voltage frequency
Angle in the fundamental voltage
The dclink voltage
The carrier wave frequency is set to
One carrier wave period time equals
1° in the fundamental equals
The zerovoltage potential equals
$350 V_{a c}$
50 Hz
15°
$700 V_{d c}\left(\pm 350{ }_{d c}\right)$
$18 \mathrm{kHz}(360$ times the fundamental 50 Hz)
$\frac{1}{18000} \approx 0.056 \mathrm{~ms}$
$\frac{1}{50} \cdot \frac{1}{360} \approx 0.056 \mathrm{~ms}$
$v_{0}=\frac{\left(v_{a}+v_{b}+v_{c}\right)}{3}$

Solution 1.9

RESULT in the interval $14,5-15,5$ deg with numerical integration	Phase a	Phase b	Phase c
4.15a) Average sinusoidal phase voltage	338	-91	-248
4.15b) Average symmetrised phase voltage		338	-91
Compared to Sinusoidal phase voltage reference at 15 degrees	338	-248	

See diagrams at following 2 pages

Solution 1.9a
Sinusoidal 3phase voltage reference

Sinusoidal zero_potential

Solution 1.9b

Symmetrised reference 3phase voltage

Symmetrisedubz_phase

Symmetriseducz_phase

Solution 1.9 b cont'd

Symmetrised reference 3phase voltage

Numerical integration in EXCEL Average voltage 338 V
Voltage time area 0.0376 Vs
$350 \cdot \cos (\omega t)=\left\{\omega t=15^{\circ}\right\}=338 \mathrm{~V}$
$\int_{t_{0}}^{t} 350 \cdot \cos (\omega t) d t=\frac{1}{\omega} \cdot I_{t_{0}}^{t_{1}} \sin (\omega t)=$
$=\left\{\omega t_{1}=16^{\circ}, \omega t_{0}=14^{\circ}\right\}=0.0376 \mathrm{Vs}$

Numerical integration in EXCEL
Average voltage -90.4 V
Koltargetime area -0.01 Vs
$350 \cdot \cos (\omega t-2 \pi / 3)=\left\{\omega t=15^{\circ}\right\}=-90.6 \mathrm{~V}$
$\int_{1}^{t} 350 \cdot \cos (\omega t-2 \pi / 3) d t=\frac{1}{\omega} \cdot I_{t_{0}^{\prime}}^{t_{0}} \sin (\omega t-2 \pi / 3)=$
$=\left\{\omega t_{1}=16^{\circ}, \omega t_{0}=14^{\circ}\right\}=-0.0101 \mathrm{Vs}$

Numerical integration in EXCEL
Average voltage -248 V
Kaltugegeatime area -0.0275 Vs
$350 \cdot \cos (\omega t-4 \pi / 3)=\left\{\omega t=15^{\circ}\right\}=-247.5 \mathrm{~V}$
$\int_{t_{0}}^{t} 350 \cdot \cos (\omega t-4 \pi / 3) d t=\frac{1}{\omega} \cdot I_{t_{0}^{\prime}}^{t_{1}} \sin (\omega t-4 \pi / 3)=$
$=\left\{\omega t_{1}=16^{\circ}, \omega t_{0}=14^{\circ}\right\}=-0.0275 \mathrm{Vs}$

1.9 : Modulation of a 4Q cpnverter

Given:

- Udc $=600 \mathrm{~V}$
- e=200 V
- $i(t=0)=0$
- Voltage reference given

Parameters:

- L= 2 [mH]
- Switchfrekvens: 6.67 [kHz]

Draw:

- Potentials v_{a} and v_{b}
- Load voltage u

Calculate

- Positive current derivative
- Negative current derivative

Draw

- Load current i

1.9 Solution

Given:

- Udc $=600 \mathrm{~V}$
- e=200 V
- $i(t=0)=0$
- Voltage reference given

Parameters:

- L= 2 [mH]
- Switchfrekvens: 6.67 [kHz]

Draw:

- Potentials v_{a} and v_{b}
- Load voltage u

Calculate

- Positive current derivative
- Negative current derivative

Draw

- Load current i

Exercise 1.10 Voltage vectors

Deduce the 8 voltage vectors that are created in a converter fed by a constant voltage!

Solution 1.10

$$
\begin{aligned}
& V_{0}=\frac{V_{A}+V_{B}+V_{C}}{3} \\
& \left\{\begin{array}{l}
U_{A}=V_{A}-V_{0} \\
U_{B}=V_{B}-V_{0} \\
U_{C}=V_{C}-V_{0}
\end{array}\right. \\
& \left\{\begin{array}{l}
U_{\alpha}=\sqrt{3 / 2} \cdot U_{A} \\
U_{\beta}=\frac{1}{\sqrt{2}} \cdot\left(U_{B}-U_{C}\right)
\end{array}\right.
\end{aligned}
$$

modA	modB	modC	V_{A}	V_{B}	V_{c}	V_{0}	$U_{\text {A }}$	U_{B}	U_{c}	ualfa	ubeta*j	$\mathrm{U}_{\text {vector }}$
0	0		O- $U_{d} / 2$	$-U_{d} / 2$	$-U_{d} / 2$	$-U_{d} / 2$	0	0	0	0	0	0
0	0		$1-U_{d} / 2$	$-U_{d} / 2$	$U_{d} / 2$	$-U_{d} / 6$	$-U_{d} / 3$	$-U_{d} / 3$	$U_{d} 2 / 3$	$-U_{d} / \sqrt{6}$	$-U_{d} / \sqrt{2}$	$\sqrt{2 / 3} \cdot U_{d} \cdot e^{\frac{1}{t}}$
0	1		$1-U_{d} / 2$	$U_{\text {d }} / 2$	$U_{d} / 2$	$U_{d} / 6$	$-U_{d} 2 / 3$	$U_{d} / 3$	$U_{d} / 3$	- $U_{d} \sqrt{2 / 3}$		$-\sqrt{2 / 3} \cdot U_{4}$
0	1		- $-U_{d} / 2$	$U_{i} / 2$	$-U_{d} / 2$	$-U_{d} / 6$	$-U_{d} / 3$	$U_{d} 2 / 3$	$-U_{d} / 3$	$-U_{d} / \sqrt{6}$	$U_{d} / \sqrt{2}$	2/3 $\cdot U_{d} \cdot e^{+e^{*}}$
	1		$)^{U}{ }_{4} / 2$	$U_{d} / 2$	$-U_{d} / 2$	$U_{\text {d }} / 6$	$U_{d} / 3$	$U_{d} / 3$	$-U_{d} 2 / 3$	$U_{d} / \sqrt{6}$	$U_{d} / \sqrt{2}$	$\sqrt{2 / 3} \cdot U_{d} \cdot e^{\frac{e}{4}}$
1	0		$)^{U 1}{ }_{4} / 2$	- $U_{d} / 2$	$-U_{d} / 2$	$-U_{d} / 6$	$U_{d} 2 / 3$	$-U_{d} / 3$	$-U_{d} / 3$	$\cup_{0} \sqrt{2 / 3}$		$\sqrt{2 / 3} \cdot U_{4}$
1	0		$1 U_{4} / 2$	- $U_{d} / 2$	$U_{d} / 2$	$U_{d} / 6$	$U_{d} / 3$	$-U_{d} 2 / 3$	$U_{d} / 3$	$\cup^{*} / \sqrt{6}$	$-U_{d} / \sqrt{2}$	$\sqrt{213} \cdot U_{d} \cdot e^{*}$
1	1		$1 U_{4} / 2$	$U_{i} / 2$	$U_{d} / 2$	$U_{d} / 2$	0	0	0			0

Exercise $1.11 \mathrm{i}_{\mathrm{D}}$ and i_{Q} in symmetric three phase

A three phase self commutated converter is connected to the three phase grid with net reactors. The fundamental current of from the converter to the net is a symmetric 3phase system:

$$
\begin{aligned}
& i_{a}=\hat{\imath} \cdot \cos (\omega \mathrm{t}) \\
& i_{b}=\hat{\imath} \cdot \cos (\omega \mathrm{t}-2 * \mathrm{pi} / 3) \\
& i_{c}=\hat{\imath} \cdot \cos \left(\omega \mathrm{t}-4^{*} \mathrm{pi} / 3\right)
\end{aligned}
$$

a) Deduce the expressions for i_{D} and i_{Q} !
b) Determine the active and reactive power!
c) The DC voltage is U_{d}. Determine the highest possible grid voltage relative to U_{d} !

Solution 1.11a

a) Symmetric $3-$ phase $R S T$ - frame

$$
\left\{\begin{array}{l}
i_{a(1)}=\hat{i} \cdot \cos (\omega \cdot t-\phi) \\
i_{b(1)}=\hat{i} \cdot \cos \left(\omega \cdot t-\frac{2 \pi}{3}-\phi\right) \\
i_{c(1)}=\hat{i} \cdot \cos \left(\omega \cdot t-\frac{4 \pi}{3}-\phi\right)
\end{array}\right.
$$

Transform from $R S T$ - frame to $\alpha \beta$-frame
$i_{\alpha \beta}=\sqrt{\frac{2}{3}} \cdot\left(\hat{i} \cdot \cos (\omega \cdot t-\phi) \cdot e^{j 0}+\hat{i} \cdot \cos \left(\omega \cdot t-\frac{2 \pi}{3}-\phi\right) \cdot e^{j \frac{2 \pi}{3}}+\hat{i} \cdot \cos \left(\omega \cdot t-\frac{4 \pi}{3}-\phi\right) \cdot e^{j \frac{4 \pi}{3}}\right)=$
$=\left\{\cos (x)=\frac{e^{j x}+e^{-j x}}{2}\right\}=\sqrt{\frac{2}{3}} \cdot \hat{i} \cdot\left(\frac{e^{j(\omega t-\phi)}+e^{-j(\omega t-j \phi)}}{2}+\frac{e^{j\left(\omega t-\frac{2 \pi}{3}-\phi\right)}+e^{-j\left(\omega t+\frac{2 \pi}{3}-\phi\right)}}{2} \cdot e^{j \frac{2 \pi}{3}}+\frac{e^{j\left(\omega t-\frac{4 \pi}{3}-\phi\right)}+e^{-j\left(\omega t+\frac{4 \pi}{3}-\phi\right)}}{2} \cdot e^{j \frac{4 \pi}{3}}\right)=$
$=\sqrt{\frac{2}{3}} \cdot \frac{\hat{i}}{2} \cdot\left(e^{j \omega t-j \phi}+e^{-j \omega t+j \phi}+\left(e^{j \omega t-j \frac{2 \pi}{3}-j \phi}+e^{-j \omega t+j \frac{2 \pi}{3}+j \phi}\right) \cdot e^{j \frac{2 \pi}{3}}+\left(e^{j \omega t-j \frac{4 \pi}{3}-j \phi}+e^{-j \omega t+j \frac{4 \pi}{3}+j \phi}\right) \cdot e^{j \frac{4 \pi}{3}}\right)=$
$=\sqrt{\frac{2}{3}} \cdot \frac{\hat{i}}{2} \cdot\left(e^{j \omega t-j \phi}+e^{-j \omega t+j \phi}+e^{j \omega t-j \frac{2 \pi}{3}-j \phi+j \frac{2 \pi}{3}}+e^{-j \omega t+j \frac{2 \pi}{3}+j \phi+j \frac{2 \pi}{3}}+e^{j \omega t-j \frac{4 \pi}{3}-j \phi+j \frac{4 \pi}{3}}+e^{-j \omega t+j \frac{4 \pi}{3}+j \phi+j \frac{4 \pi}{3}}\right)=$
$=\sqrt{\frac{2}{3}} \cdot \frac{\hat{i}}{2} \cdot\left(e^{j \omega t-j \phi}+e^{-j \omega t+j \phi}+e^{j \omega t-j \phi}+e^{-j \omega t+j \phi+j \frac{4 \pi}{3}}+e^{j \omega t-j \phi}+e^{-j \omega t+j \phi+j \frac{8 \pi}{3}}\right)=\sqrt{\frac{2}{3}} \cdot \frac{\hat{x}}{2} \cdot\left(3 \cdot e^{j \omega t-j \phi}+e^{-j \omega t+j \phi} \cdot\left(1-\frac{1}{2}-\frac{\sqrt{3}}{2}-\frac{1}{2}+\frac{\sqrt{3}}{2}\right)\right)=$
$=\frac{3 \sqrt{2}}{2 \sqrt{3}} \cdot \hat{i} \cdot e^{j \omega t-j \phi}=\sqrt{\frac{3}{2}} \cdot \hat{i} \cdot e^{j(\omega t-\phi)}=\sqrt{\frac{3}{2}} \cdot \hat{i} \cdot(\cos (\omega t-\phi)+j \cdot \sin (\omega t-\phi))$
Flux coordinates $i_{d q}=i_{\alpha \beta} \cdot e^{-j\left(\omega t-\frac{\pi}{2}\right)}=\sqrt{\frac{3}{2}} \cdot \hat{i} \cdot e^{j \omega t-j \phi-j \omega t+j \frac{\pi}{2}}=\sqrt{\frac{3}{2}} \cdot \hat{i} \cdot e^{j\left(\frac{\pi}{2}-\phi\right)}=\sqrt{\frac{3}{2}} \cdot \hat{i} \cdot\left(\cos \left(\frac{\pi}{2}-\phi\right)+j \cdot \sin \left(\frac{\pi}{2}-\phi\right)\right)$

$$
\left\{\begin{array}{l}
i_{d}=\sqrt{\frac{3}{2}} \cdot \hat{i} \cdot \cos \left(\frac{\pi}{2}-\phi\right) \\
i_{q}=\sqrt{\frac{3}{2}} \cdot \hat{i} \cdot \sin \left(\frac{\pi}{2}-\phi\right)
\end{array}\right.
$$

Exercise 1.123 phase line

Symmetric three phase
A three phase grid with the voltages uR, uS, uT loaded by sinusoidal currents iR, iS, iT and the angle ϕ.
a) Derive the expression for the voltage vector

b) Derive the expression for the current vector
c) Determine the active power $p(t)$!

Do the same derivations as above with the vectors expressed in the flux reference frame!

Solution 1.12a

a) Equ $2.39,2.40$ and exercise $4.26 a \vec{u}_{N}=\sqrt{\frac{2}{3}} \cdot\left(u_{R}+u_{S} \cdot e^{j \frac{2 \pi}{3}}+u_{T} \cdot e^{j \frac{4 \pi}{3}}\right)=\sqrt{\frac{3}{2}} \cdot u_{R}+\frac{1}{\sqrt{2}} \cdot\left(u_{S}-u_{T}\right)$
$\left\{\begin{array}{l}u_{R}=\hat{u} \cdot \cos (\omega \cdot t) \\ u_{S}=\hat{u} \cdot \cos \left(\omega \cdot t-\frac{2 \pi}{3}\right) \\ u_{T}=\hat{u} \cdot \cos \left(\omega \cdot t-\frac{4 \pi}{3}\right)\end{array}\right\} \Rightarrow \vec{u}_{N}=\sqrt{\frac{3}{2}} \cdot \hat{u} \cdot e^{j \omega t}$

Solution 1.12b

b) In the same way $\vec{i}_{N}=\sqrt{\frac{2}{3}} \cdot\left(i_{R}+i_{S} \cdot e^{j \frac{2 \pi}{3}}+i_{T} \cdot e^{j \frac{4 \pi}{3}}\right)=\sqrt{\frac{3}{2}} \cdot i_{R}+\frac{1}{\sqrt{2}} \cdot\left(i_{S}-i_{T}\right)$

$$
\left\{\begin{array}{l}
i_{R}=\hat{i} \cdot \cos (\omega \cdot t-\varphi) \\
i_{S}=\hat{i} \cdot \cos \left(\omega \cdot t-\frac{2 \pi}{3}-\varphi\right) \\
i_{T}=\hat{i} \cdot \cos \left(\omega \cdot t-\frac{4 \pi}{3}-\varphi\right)
\end{array}\right\} \Rightarrow \vec{i}_{N}=\sqrt{\frac{3}{2}} \cdot \hat{i} \cdot e^{j(\omega t-\varphi)}
$$

The power in dq-frame, the dot-product $P=e^{d q} \cdot i^{d q}=e_{d} \cdot i_{d}+e_{q} \cdot i_{q}$
$\left\{\begin{array}{l}e_{a}=\hat{e} \cdot \cos (\omega \cdot t) \\ e_{b}=\hat{e} \cdot \cos \left(\omega \cdot t-\frac{2 \pi}{3}\right) \\ e_{c}=\hat{e} \cdot \cos \left(\omega \cdot t-\frac{4 \pi}{3}\right)\end{array}\right\} \Rightarrow \vec{e}^{\alpha \beta}=\sqrt{\frac{3}{2}} \cdot \hat{e} \cdot e^{j \omega t}$
Transform from $\alpha \beta$ - frame to dq-flux frame
$\vec{e}^{d q}=\sqrt{\frac{3}{2}} \cdot \hat{e} \cdot e^{j \omega t} \cdot e^{-j\left(\omega t-\frac{\pi}{2}\right)}=\sqrt{\frac{3}{2}} \cdot \hat{e} \cdot e^{j \omega t-j \omega t+j \frac{\pi}{2}}=\sqrt{\frac{3}{2}} \cdot \hat{e} \cdot e^{j \cdot \frac{\pi}{2}}=j \cdot \sqrt{\frac{3}{2}} \cdot \hat{e}=\vec{e}^{q},\left(\vec{e}^{d}=0\right)$
$\left\{\right.$ The active power $\quad P=e_{q} \cdot i_{q}=\sqrt{\frac{3}{2}} \cdot \hat{e} \cdot \sqrt{\frac{3}{2}} \cdot \hat{i} \cdot \sin \left(\frac{\pi}{2}-\varphi\right)=\frac{3}{2} \cdot \hat{e} \cdot \hat{i} \cdot \cos (\varphi)=\sqrt{3} \cdot e_{\text {Heff }} \cdot i_{e f f} \cdot \cos (\varphi)$
The reactive power $\quad Q=\sqrt{3} \cdot e_{\text {Heff }} \cdot i_{\text {eff }} \cdot \sin (\varphi)$

Solution 1.12c

Sinusoidal mod ulation $U_{L N r m s}=\frac{U_{d c}}{2 \cdot \sqrt{2}}=\frac{U_{d c}}{\sqrt{8}} \approx 0.35 \cdot U_{d c}$
Sinusoidal mod ulation $U_{\text {LLrms }}=\frac{\sqrt{3}}{\sqrt{2}} \cdot \frac{U_{d c}}{2}=\sqrt{\frac{3}{8}} \cdot U_{d c} \approx 0.61 \cdot U_{d c}$
c)

Symmetriced \bmod ulation $U_{L N r m s}=\frac{U_{d c}}{\sqrt{3} \cdot \sqrt{2}}=\frac{U_{d c}}{\sqrt{6}} \approx 0.41 \cdot U_{d c}$
Symmetriced mod ulation $U_{L L r m s}=\frac{U_{d c} \cdot \sqrt{3}}{\sqrt{3} \cdot \sqrt{2}}=\frac{U_{d c}}{\sqrt{2}} \approx 0.71 \cdot U_{d c}$
Power in $\alpha \beta-$ frame $P(t)=\left\{P=\operatorname{Re}\left(\vec{u}_{N} \cdot \vec{i}_{N}^{*}\right)\right\}=\operatorname{Re}\left(\sqrt{\frac{3}{2}} \cdot \hat{u} \cdot e^{j \omega t} \cdot \sqrt{\frac{3}{2}} \cdot \hat{i} \cdot e^{-j(\omega t-\varphi)}\right)=\frac{3}{2} \cdot \operatorname{Re}\left(\hat{u} \cdot \hat{i} \cdot e^{j \omega t-j \omega t+j \varphi}\right)=$ $=\frac{3}{2} \cdot \operatorname{Re}\left(\hat{u} \cdot \hat{i} \cdot e^{j \varphi}\right)=\frac{3}{2} \cdot \hat{u} \cdot \hat{i} \cdot \cos (\varphi)=\sqrt{3} \cdot U_{H e f f} \cdot I_{e f f} \cdot \cos \left(\varphi^{R}\right)^{\prime}$

In flux órientation, flux is $\frac{\pi}{2}$ after voltage

$$
\begin{aligned}
& \left\{\begin{array}{l}
u^{d q}=u^{\alpha \beta} \cdot e^{-j \omega t+j \frac{\pi}{2}}=\sqrt{\frac{3}{2}} \cdot \hat{u} \cdot e^{j \omega t} \cdot e^{-j \omega t+j \frac{\pi}{2}}=\sqrt{\frac{3}{2}} \cdot \hat{u} \cdot e^{j \omega t-j \omega t+j \frac{\pi}{2}}=\sqrt{\frac{3}{2}} \cdot \hat{u} \cdot e^{j \frac{\pi}{2}} \\
i^{d q}=i^{\alpha \beta} \cdot e^{-j \omega t+j \frac{\pi}{2}}=\sqrt{\frac{3}{2}} \cdot \hat{i} \cdot e^{j(\omega t-\varphi)} \cdot e^{-j \omega t+j \frac{\pi}{2}}=\sqrt{\frac{3}{2}} \cdot \hat{i} \cdot e^{j \omega t-j \varphi-j \omega t+j \frac{\pi}{2}}=\sqrt{\frac{3}{2} \cdot \hat{i} \cdot e^{j \frac{\pi}{2}-j \varphi}} \\
P(t)=\operatorname{Re}\left(u^{d q} \cdot i^{d q^{*}}\right)=\operatorname{Re}\left(\sqrt{\frac{3}{2}} \cdot \hat{u} \cdot e^{j \frac{\pi}{2}} \cdot \sqrt{\frac{3}{2}} \cdot \hat{i} \cdot e^{-\left(j \frac{\pi}{2}-j \varphi\right)}\right)=\frac{3}{2} \cdot \operatorname{Re}\left(\hat{u} \cdot \hat{i} \cdot e^{j \frac{\pi}{2}-j \frac{\pi}{2}+j \varphi}\right)= \\
=\frac{3}{2} \cdot \operatorname{Re}\left(\hat{u} \cdot \hat{i} \cdot e^{j \varphi}\right)=\frac{3}{2} \cdot \hat{u} \cdot \hat{i} \cdot \cos (\varphi)
\end{array}\right.
\end{aligned}
$$

Exercise 1.13 Symmetric 3-phase transformation

Symmetric three phase

Do the inverse coordinate transformation from the (d, q) reference frame to (a, b) reference frame and the two phase to three phase transformation as well. Express the equations in component form. Apply the coordinate transform on the following signals.

Solution 1.13

$$
\left\{\begin{array}{l}
\alpha=D \cdot \cos \theta-Q \cdot \sin \theta \\
\beta=Q \cdot \cos \theta+D \cdot \sin \theta
\end{array}\right.
$$

$$
\pi<\theta<2 \pi
$$

$$
\begin{aligned}
& \alpha=\cos \theta, \beta=\sin \theta \\
& \alpha=\cos \theta-\sin \theta, \beta=\cos \theta+\sin \theta \\
& \\
& \alpha=\cos \theta, \beta=\sin \theta \\
& \alpha=\sqrt{2} \cos \theta, \beta=\sqrt{2} \sin \theta
\end{aligned}
$$

2

Exercises on Current Control

Exercise 2.1 Current increase

a. The coil in the figure to the right has the inductance L and negligible resistance. It has no current when $t<0$. The current shall be increased to the value $i_{1}=0,1 \quad \mathrm{U}_{\mathrm{d}} / \mathrm{L}$ in the shortest possible time.
Determine the voltage $u(t)$ and the current $i(t)$ for $\mathrm{t}>0$!
b. The switch s is operated with the period time
 $\mathrm{T}=1 \mathrm{~ms}$. The time constant of the coil is $\mathrm{L} / \mathrm{R}=10 \mathrm{~T}$. The average of the current is 0,1 U_{d} / R. Determine the voltage $u(t)$ and the current $i(t)$!

Solution 2.1

a) $R=0$

Calculate the shortest time for the
current to increase from 0 to $0.1 \frac{U_{d}}{L} A$
$U=L \cdot \frac{d i}{d t} \Rightarrow$ the higher the voltage
the faster the current increase. Use the highest voltage U_{d}

$\Delta t=\frac{L \cdot \Delta i}{U_{d}}=\frac{L \cdot 0.1 \cdot U_{d}}{U_{d} \cdot L}=0.1 \mathrm{sec}$
($u(t), i(t))$

Solution 2.1 Continued

b)

Averagecurrent
$i_{a v g}=0.1 \cdot \frac{U_{d}}{R}$
Averagevoltage

$$
u_{a v g}=R \cdot i_{a v g}=R \cdot 0.1 \cdot \frac{U_{d}}{R}=0.1 \cdot U_{d}
$$

Duty cycle

$$
x=\frac{u_{a v g}}{U_{d}}=\frac{0.1 \cdot U_{d}}{U_{d}}=0.1
$$

Period time

$$
T=1 m s
$$

Time const.
Voltage pulse time

$$
\tau=\frac{L}{R}=10 \cdot T=10 \mathrm{~ms}
$$

$$
t_{p}=x \cdot T=0.1 \mathrm{~ms}
$$

$$
\left(0 \leq t_{p} \leq x m s\right)
$$

As $R \neq 0$

$$
i(t)=\frac{U_{d}}{R} \cdot\left(1-e^{-\frac{x}{\tau}}\right)=\{t \ll \tau\} \approx \frac{U_{d}}{R} \cdot\left(1-1+\frac{x}{\tau}\right)=\frac{U_{d} \cdot x}{R \cdot \tau}=\frac{U_{d} \cdot t_{p}}{R \cdot \frac{L}{R}}=\frac{U_{d} \cdot t_{p}}{L}
$$

$$
\left\{\begin{array}{l}
i(t)_{\text {start }}=0.1 \cdot \frac{U_{d}}{R}-\frac{U_{d} \cdot t_{p}}{2 \cdot L} \\
i(t)_{\text {end }}=0.1 \cdot \frac{U_{d}}{R}+\frac{U_{d} \cdot t_{p}}{2 \cdot L}
\end{array}\right.
$$

2.2 2Q Current Control without load resistance

- A 2 quadrant DC converter with a constant voltage load has the following data:
- Udc = 600 V
$-L=1 \mathrm{mH}$
- $R=0$
- Ts = 0.1 ms

- $E=200$ V
- Calculate and draw the output voltage patterns before, during and after a current step from 0 to 50 A and then back to 0 A again a few modulation periods after the positive step.

2.2 Solution

- Calculation steps:

1. Calculate the voltage reference before the positive step, between the steps and after the negative step
2. Calculate how many sampling periods that are needed for the positive and negative steps
3. Calculate the current derivative and ripple
4. Draw the waveform

2.2 Solution, continued

- Step 1

$$
\begin{aligned}
& \text { Step } 1 \\
& \dot{u}^{*}(k)=\frac{L}{T_{s}} \cdot\left(i^{*}(k)-i(k)\right)+e=\left\{\begin{array}{c}
e=200 \mathrm{~V} \text { before the positive step } \\
\frac{1 \cdot 10^{-3}}{0.1 \cdot 10^{-3}} \cdot(50-0)+200=700 \mathrm{~V} \text { choing the positive step } \\
\quad e=200 \mathrm{~V} \text { between the steps } \\
\frac{1 \cdot 10^{-3}}{0.1 \cdot 10^{-3}} \cdot(0-50)+200=-300 \mathrm{~V} \text { choing the negative step } \\
\quad e=200 \mathrm{~V} \text { after the negative step }
\end{array}\right.
\end{aligned}
$$

- Step 2
- The positive step requires $200+500 \mathrm{~V}=700 \mathrm{~V}$ (back-emf+current increase), but the DC link only provides 600 V , i.e two sampling periods are needed, one with $200+400 \mathrm{~V}$ and one with $200+100 \mathrm{~V}$.
- The negative step requires $200-500 \mathrm{~V}=-300 \mathrm{~V}$ (back-emf+current decrease), but the DC link only provides 0 V, i.e three sampling periods are needed, two with 200-200V and one with 200-100 V.

2.2 Solution, continued

- \quad Step 3
$\left.\begin{array}{l}\frac{d i}{d t}=\frac{u_{L}}{L} \\ t_{\text {pulse }}=\frac{e}{U_{d}} \cdot T_{s}\end{array}\right\} \rightarrow \Delta i=\frac{u_{L}}{L} \cdot t_{\text {pulse }}=\frac{\left(U_{d}-e\right)}{L} \cdot \frac{e}{U_{d}} \cdot T_{s}=\frac{(600-200)}{1 \cdot 10^{-3}} \cdot \frac{200}{600} \cdot 0.1 \cdot 10^{-3}=13.3 \mathrm{~A}$
- Step 4
- Draw the carrier wave and the voltage reference wave as calculated. This gives the switching times
- Note the time instants when the current will pass its reference values = when the carrier wave turns
- See next page

2.2 Solution. continued

Current reference (yellow) and Real current (magenta)

Voltage reference (yellow) and modulating wave (magenta). Only applicable to Sampled Current Control

Output voltage (yellow) and induced emf (magenta)

2.3 4Q Current Control without load resistance

- A 4 quadrant DC converter with a constant voltage load has the following data:
- Udc = 600 V
$-L=1 \mathrm{mH}$
- $R=0$
- Ts = 0.1 ms
- $E=200 \mathrm{~V}$

- Calculate and draw the output voltage patterns before, during and after a current step from 0 to 50 A and then back to 0 A again a few modulation periods after the positive step.

2.3 Solution

- Calculation steps:

1. Calculate the voltage reference before the positive step, between the steps and after the negative step
2. Calculate how many sampling periods that are needed for the positive and negative steps
3. Calculate the current derivative and ripple
4. Draw the waveform

2.3 Solution, continued

- Step 1

- Step 2
- The positive step requires $200+500 \mathrm{~V}=700 \mathrm{~V}$ (back-emf+current increase) $=+$ - 350 , but the DC link only provides $+/-300 \mathrm{~V}$, i.e two sampling periods are needed, one with $200+400 \mathrm{~V}=+/-300$ and one with $200+100 \mathrm{~V}=+1-150 \mathrm{~V}$.
- The negative step requires $200-500 \mathrm{~V}=-300 \mathrm{~V}$ (back-emf+current decrease)=-/+150. The DC link provides down to -300 V, i.e 1 sampling periods is enough

2.3 Solution, continued

- \quad Step 3
$\left.\begin{array}{l}\frac{d i}{d t}=\frac{u_{L}}{L} \\ t_{\text {pulse }}=\frac{e}{U_{d}} \cdot T_{s}\end{array}\right\} \rightarrow \Delta i=\frac{u_{L}}{L} \cdot t_{\text {pulse }}=\frac{\left(U_{d}-e\right)}{L} \cdot \frac{e}{U_{d}} \cdot T_{s}=\frac{(600-200)}{1 \cdot 10^{-3}} \cdot \frac{200}{600} \cdot 0.1 \cdot 10^{-3}=13.3 \mathrm{~A}$
- Step 4
- Draw the carrier wave and the voltage reference wave as calculated. This gives the switching times
- Note the time instants when the current will pass its reference values $=$ when the carrier wave turns
- See next page

2.3 Solution, continued

Modulating wave and Potential referencs (blue and red)

Output voltage (blue) and induced emf (magenta)

3

Exercises on Speed Control

Exercise 3.1 Cascade control

- The speed of a motor shaft shall be controlled by so called cascade control. The torque source is modelled by a first order time constant.
- Draw a block diagram of the system with speed control, torque source model and inertia
- Include the load torque in the block diagram.
- How large is the stationary error with a Pcontroller and constant load torque?
- Show two different ways to eliminate the stationary fault.

Solution 3.1a

1 The PI-controller with the gain K_{ω}
2 The torque controller is modelled as a first order filter
3 By dividing the torque with the inertia J the angular acceleration is achieved. By integration, dividing with the LaPlace 1/s, the angular speed is achieved.

4 By subtracting the angular speed from its reference the control error is achieved

Solution 3.1b

See equation 9.1. The load torque is subtracted from the achieved electric torque at the output of the torque congtroller.

Solution 3.1c

Solution 3.1d -Alt. 1 Replace the speed P-controller with a PI-controller

Solution 3.1d. Alt. 2 Add the load before the torque source

Exercise 3.2 DC motor control

A DC motor with the inertia $\mathrm{J}=0,033 \mathrm{kgm}^{2}$ is driven by a converter with current control set for dead-beat current control at 3.33 ms sampling time. The speed of the DC motor is controlled by a P-regulator. The current loop is modelled with a first order time constant that equals the pulse interval of the converter.
a) Draw a block diagram of the system with speed control with the models of the current loop and the motor. Calculate $K_{p}=$ the gain of the speed control for maximum speed without oscillatory poles.
b) The motor is loaded with the torque T_{l}. How large is the speed stationary error?
c) If the speed is measured with a tachometer and lowpass filtered, what does that mean for K_{p} ?

Solution 3.2a

$$
K_{\omega}=\frac{0.033}{4 \cdot 3.3 \cdot 10^{-3}}=2.5
$$

Solution 3.2b

Solution 3.2c

It is now the measured speed $\left(\omega_{t}\right)$ that is controlled and the system becomes of 3 rd order.

IF we assume that the filter time constant $\left(\tau_{\omega}\right)$ is much longer that the torque control time constant $\left(\tau_{m}\right)$, then the system (including the filter) is now slower than the system without a filter, implying a need for a lower gain.

The solution to 3.2 a can be applied, but with the torque control time constant replaced by the filter time constant, thus giving a lower speed controller gain.

Exercise 3.3 Pump control

- A pump is driven at variable speed. It is therefore driven by an electric machine that is speed controlled. The speed controller is PI. The total inertia for both pump and electric machine is $\mathrm{J}=0,11$. The power converter is a current controlled switched amplifier where the current control has an average response time of $100 \mu \mathrm{~s}$, which is considered very fast if the integration time of the PI control is not of the same magnitude.
a) Draw the speed control system as a block diagram with the PI control and the models for torque source, load torque and inertia.
b) Dimension the PI control so that the system has a double pole along the negative real axis.
c) If the integration part for some reason is excluded $(T i=\infty)$, how large is the speed error then?
d) If the current loop can not be considered as very fast, how is the it modelled in the block diagram?
e) There is a standard method for dimensioning the speed control in d). What is it called?

Solution 3.3a

The torque controller is modelled as a 1st order low pass filter. As the integration time is much longer than the filter time constant, the filter time constant is set to zero

Solution 3.3b

Open circuit (The torque source is $100 \mu s$, very fast)

$$
G=K_{\omega} \cdot\left(1+\frac{1}{s \tau_{i}}\right) \cdot 1 \cdot \frac{1}{s \cdot J}
$$

Closed loop $=\frac{G}{1+G}=\frac{K_{\omega} \cdot\left(1+\frac{1}{s \tau_{i}}\right) \cdot \frac{1}{s \cdot J}}{1+K_{\omega} \cdot\left(1+\frac{1}{s \tau_{i}}\right) \cdot \frac{1}{s \cdot J}}=\frac{K_{\omega} \cdot\left(s \tau_{i}+1\right)}{s \cdot J \cdot s \tau_{i}+K_{\omega} \cdot\left(s \tau_{i}+1\right)}=\frac{K_{\omega} \cdot\left(s \tau_{i}+1\right)}{s^{2} \cdot J \cdot \tau_{i}+s \cdot K_{\omega} \cdot \tau_{i}+K_{\omega}}$
Characteristic equation $s^{2}+s \cdot \frac{K_{\omega}}{J}+\frac{K_{\omega}}{J \cdot \tau_{i}}=0$ with the roots $s=-\frac{K_{\omega}}{2 \cdot J} \pm \sqrt{\frac{K_{\omega}{ }^{2}}{4 \cdot J^{2}}-\frac{K_{\omega}}{J \cdot \tau_{i}}}$
Double roots $\Rightarrow \frac{K_{\omega}{ }^{2}}{4 \cdot J^{2}}-\frac{K_{\omega}}{J \cdot \tau_{i}}=0 \Rightarrow \frac{K_{\omega}{ }^{2}}{4 \cdot J^{2}}=\frac{K_{\omega}}{J \cdot \tau_{i}} \Rightarrow K_{\omega}=\frac{4 \cdot J}{\tau_{i}}$
Assume $\tau_{i}=100 m s\left(\right.$ as $\left.\tau_{i} \gg \tau_{m}, 100 \mu s\right), J=0.11$

$$
K_{\omega}=\frac{4 \cdot 0.11}{0.1}=4.4
$$

Solution 3.3c

$$
\begin{aligned}
& T=\left(\omega^{*}-\omega\right) \cdot K_{\omega} \cdot\left(1+\frac{1}{s \tau_{i}}\right)=\left\{\tau_{i} \rightarrow \infty\right\}=\left(\omega^{*}-\omega\right) \cdot K_{\omega} \\
& \left\{\begin{array}{l}
T=\left(\omega^{*}-\omega\right) \cdot K_{\omega} \\
\text { Stationary }, T=T_{\text {load }}
\end{array}\right. \\
& T_{\text {load }}=\left(\omega^{*}-\omega\right) \cdot K_{\omega} \\
& \left(\omega^{*}-\omega\right)=\frac{T_{\text {load }}}{K_{\omega}}
\end{aligned}
$$

Solution 3.3d

Solution 3.3e

- With new closed loop system, there will a another third pole to place. This is more complicated, but a recommended method is the Symmetric optimum, see chapter 9.5

$$
\begin{align*}
& \omega_{0}=\frac{1}{\sqrt{\tau_{i} \cdot \tau_{m}}} \tag{eq9.19}\\
& \tau_{i}=a^{2} \cdot \tau_{m} \quad \tau_{m}<\tau_{i}, a>1 \tag{eq9.20}\\
& \text { No complex poles, set } a=3 \tag{chapter9.5}\\
& \text { Set all three poles the same at } \omega_{0} \\
& \tau_{i}=a^{2} \cdot \tau_{m}=3^{2} \cdot 100 \cdot 10^{-6}=0.9 \mathrm{~ms} \\
& K_{p}=\frac{a \cdot J}{T_{i}}=\frac{3 \cdot 0.11}{0.9 \cdot 10^{-3}}=367(!)
\end{align*}
$$

4

Exercises on MMF distribution

Exercise 4.1 2- and 6-pole motor

Draw a cross section of one two pole and one six pole synchronous machine with salient poles. Draw also a diameter harness (Swedish "diameterhärva") which covers all poles.

Solution 4.1

Exercise 4.2 DC machine

> Draw a cross section of a DC machine with salient poles. Draw also a diameter harness which covers all poles.

Solution 3.2

2-pole DC machine

6-pole DC machine

Exercise 4.3 mmf

Explanation. "In electrical engineering, an armature is the power producing component of an electric machine. The armature can be on either the rotor (the rotating part) or the stator (stationary part) of the electric machine". [Wikipedia].
In the other part the field is produced.

A two pole armature winding in the stator of an alternating current machine is approximately sinusoidally distributed according to the figure below.

The current density (current per angle unit) is $J=J m a x * \sin (\alpha)[A /$ radian $]$. The airgap is constant $\delta=\delta_{0}$.

Note that the outspread figure is done by spreading the windings from $\alpha=0$ and that the machine is seen from the back,that is why the current directions change.

How large is the magnetomotive force $F(\alpha)$? Where will the magnetomotive force be found?

A 2-pole machine

Current density $J=J_{\max } \cdot \sin (\alpha)$

The magnetic field in the lower closed loop is clock wise, while the magnetic field in the upper closed loop has opposite direction. However, along the center line, the direction from both loops has the same direction, and the contribution from both loops add.
Use ampèr's law in one loop. The magnetomotoric force in the air gap has contribution from both the lower and the upper loop.
$F=2 \cdot \int_{\alpha}^{180+\alpha} J d \alpha=J_{\max }^{180+\alpha} \int_{\alpha}^{10} \sin (\alpha) d \alpha=J_{\text {max }} \cdot\left(1_{\alpha}^{180+\alpha}(-\cos (\alpha))\right)=2 \cdot J_{\max } \cdot(\cos (\alpha)-\cos (180+\alpha))=$
$=2 \cdot J_{\text {max }} \cdot(\cos (\alpha)-\underbrace{\cos (180)}_{=-1} \cdot \cos (\alpha)+\underbrace{\sin (180)}_{=0} \cdot \sin (\alpha))=2 \cdot J_{\max } \cdot \cos (\alpha)$

Solution 4.3 cont'd

Where will the magnetomotive force be found in the magnetic circuit mmfequals the total current inside in one loop.

$$
\begin{aligned}
& N \cdot I=\oint \bar{H} \cdot d \bar{s}=H_{F e} \cdot s_{F e}+H_{a i r} \cdot \delta=\frac{B_{F e}}{\mu \mu_{0}} \cdot s_{F e}+\frac{B_{a i r}}{\mu_{0}} \cdot \delta= \\
& =\frac{s_{F e}}{\mu \mu_{0} \cdot A_{F e}} \cdot \psi+\frac{\delta}{\mu_{0} \cdot A_{\delta}} \cdot \psi=R_{F e} \cdot \psi+R_{\delta} \cdot \psi \\
& R_{F e}=\frac{s_{F e}}{\mu \mu_{0} \cdot A_{F e}}, R_{\delta}=\frac{\delta}{\mu_{0} \cdot A_{\delta}}
\end{aligned}
$$

As the reluctance is proportionel to $1 / \mu$, the reluctance in the iron can be neglected compared to the air gap reluctance.
I.e. the magnetomotive force will be concentrated in the two air gaps $\underset{F=J_{\max } \cdot c o s(\alpha)}{(\alpha)}$

The magnetomotive force in one air gap will be

Exercise 4.92 wave mmf

An electrical machine has two waves of magnetomotive force. One is caused by the current distribution in the rotor and the other by the current distribution in the stator, see figure below.

The machine has a constant airgap, $\delta=\bar{\delta}_{0}$ and the iron in the stator and the rotor has infinite magnetic conductivity. The peak amplitude of the waves of the magnetomotive force are for the stator and for the rotor.

Calculate the energy in the airgap.

Solution 4.9

Both the stator and the rotor are cylindrical, thus the airgap reluctance R is the same in all directions
See equ(8.8) $\quad \vec{F}_{\delta}=\vec{F}_{r}+\vec{F}_{s}=F_{x}+j \cdot F_{y}$
See equ(8.9) $\quad F_{x}=\hat{F}_{s} \cdot \cos (\gamma)+\hat{F}_{r}$
See equ(8.9) $\quad F_{y}=\hat{F}_{s} \cdot \sin (\gamma)$
See equ(8.10) $W_{\text {magn }}=\frac{1}{2} \cdot \frac{\hat{F}_{x}^{2}}{R}+\frac{1}{2} \cdot \frac{F_{y}^{2}}{R}=\frac{\hat{F}_{s}^{2} \cdot \cos ^{2}(\gamma)+2 \cdot \hat{F}_{s} \cdot \hat{F}_{r} \cdot \cos (\gamma)+\hat{F}_{r}^{2}+\hat{F}_{s}^{2} \cdot \sin ^{2}(\gamma)}{2 R}=$

$$
=\frac{\hat{F}_{s}^{2}+2 \cdot \hat{F}_{s} \cdot \hat{F}_{r} \cdot \cos (\gamma)+\hat{F}_{r}^{2}}{2 R}
$$

Exercise 4.10 Torque

Same as 3.9. Assume that no electric energy can be fed to or from the machine and that the system is lossless.

How large is the mechanical torque as a function of the angle γ ?

Solution 4.10

See exercise 3.9
The airgap reluctance R is the same in all directions
No energy supplied to the system $W_{\text {magn }}+W_{\text {magn }}=$ constant
thus

$$
\frac{d W_{m a g n}}{d \gamma}+\frac{d W_{m e c}}{d \gamma}=0 \Rightarrow \frac{d W_{m e c}}{d \gamma}=-\frac{d W_{\text {magn }}}{d \gamma}
$$

See equ(8.11) $T=\frac{d W_{\text {mec }}}{d \gamma}$
See equ(8.13) $T=-\frac{d W_{\text {magn }}}{d \gamma}=-\frac{1}{2} \cdot \frac{d\left(\frac{F_{s}^{2}+2 \cdot F_{s} \cdot F_{r} \cdot \cos (\gamma)+F_{r}^{2}}{R}\right)}{d \gamma}=$

$$
=\frac{F_{s} \cdot F_{r} \cdot \sin (\gamma)}{R}=\frac{F_{s y} \cdot F_{r}}{R}
$$

There is no reluctance torque

Exercise 4.11 Flux

A machine with salient poles in the rotor and cylindrical stator has its armature winding in the stator. The effective number of winding turns is $N_{a, ~ e f f ~}$ and the magnetized rotor contributes to the air gap flux with Φ_{m} The main inductances are $L_{m x}$ and $L_{m y}$ in the x - and y directions.
a) How large is the flux contribution from the rotor that is
linked to the armature winding?
b) How large is the resulting flux that is interconnected with
the armature winding?
c) Draw a figure of how the armature current vector is positioned in the x-y plane to be perpendicular to the resulting air gap flux !

Solution 4.11a

The magnetized rotor contribution to the airgap flux
The effective number of winding turns in the stator
The linked flux contribution from the rotor to the

$$
\begin{aligned}
& \Phi_{\mathrm{m}} \\
& \mathrm{~N}_{\mathrm{a}, \mathrm{eff}} \\
& \Psi_{m}=\mathrm{N}_{\mathrm{a}, \mathrm{eff}} \cdot \Phi_{\mathrm{m}}
\end{aligned}
$$ armature winding

Solution 4.11b

The stator main inductance
in x-direction $\quad L_{m x}$
The stator main inductance in y-direction

The armature winding current in x-direction

The armature winding current in y-direction

The magnetizing flux in x-direction
The resulting flux, interconnected with the armaturewinding

Ψ_{m}

$$
\Psi_{a}=\left(\Psi_{m}+L_{\mathrm{mx}} \cdot I_{a x}\right)+j \cdot L_{\mathrm{my}} \cdot I_{a y}
$$

Solution 4.11c

Exercise 4.12 Flux vector

Same as 4.11 but $L_{m y} \ll L_{m x}$.

Draw a stylized picture of a cross section of the machine and draw a figure of how the armature current vector is positioned in the $x-y$ plane to be perpendicular to the resulting air gap flux!

Solution 4.12

Exercise 4.13 Armature current vector

Same as 4.12 but now the armature winding is in the rotor, which is cylindrical, and the stator has salient poles. Draw a stylized picture of a cross section of the machine and draw a figure of how the armature current vector is positioned in the $x-y$ plane to be perpendicular to the resulting air gap flux!

Solution 4.13

Exercise 4.14 Rotation problem

Suggest two ways of solving tha rotation problem, i. e. how the angle of the armature current vector to the air gap flux vector can be maintained during rotation for the cases in 4.12 and 4.13!

Solution 4.14

See chapter 8.8 and 10.1. According to chapter 8.8 the armature $D C$-winding must not be fixed to the stator.

Alt 1 This can be achieved be means of two or three phase $A C$-windings, see figure 8.9.

Exercise 4.15 Voltage equation

A three phase armature winding with the resistances \mathbf{R}_{a}, the leakage inductances $\mathrm{L}_{\mathrm{a} \lambda}$ and the fluxes Ψ_{1}, Ψ_{2}, and Ψ_{3} that are linked to the respective armature windings.
a) Form the voltage equations first for each phase and then jointly in vector form!
b) Express all vectors in rotor coordinates instead of stator coordinates and separate the equation into real and imaginary parts.

Solution 4.15a

Equation 8.28

$$
\left\{\begin{array}{l}
U_{a}=R_{a} \cdot i_{a}+\frac{d \psi_{1}}{d t}=R_{a} \cdot i_{a}+\frac{d\left(\psi_{\delta 1}+L_{a \lambda} \cdot i_{a}\right)}{d t} \\
U_{b}=R_{a} \cdot i_{b}+\frac{d \psi_{2}}{d t}=R_{a} \cdot i_{b}+\frac{d\left(\psi_{\delta 2}+L_{a \lambda} \cdot i_{b}\right)}{d t} \\
U_{c}=R_{a} \cdot i_{c}+\frac{d \psi_{3}}{d t}=R_{a} \cdot i_{c}+\frac{d\left(\psi_{\delta 3}+L_{a \lambda} \cdot i_{c}\right)}{d t}
\end{array}\right.
$$

Equation 8.29

$$
\vec{U}_{s}^{\alpha \beta}=R_{a} \cdot \vec{i}_{s}^{\alpha \beta}+\frac{d \vec{\psi}_{s}^{\alpha \beta}}{d t}=R_{a} \cdot \vec{i}_{s}^{\alpha \beta}+\frac{d\left(\vec{\psi}_{s}^{\alpha \beta}+L_{a \lambda} \cdot \vec{i}_{s}^{\alpha \beta}\right)}{d t}
$$

Solution 4.15b

Perform a transformation from the $\alpha \beta$-frame to xy-frame.
Assume you are "sitting" on the xy - frame, which is rotating in positive direction,
then you will see the $\alpha \beta$-frame rotating in negative direction
Equation 8.30
$u_{s}^{\alpha \beta}=R_{a} \cdot \vec{i}_{s}^{\alpha \beta}+\frac{d\left(\vec{\psi}_{\delta}^{\alpha \beta}+L_{a \lambda} \cdot \vec{i}_{s}^{\alpha \beta}\right)}{d t}$
Transform by multiply by $e^{-j \omega t}$ (negative direction)

$$
\left\{\begin{array}{l}
\vec{u}_{s}^{x y}=\vec{u}_{s}^{\alpha \beta} \cdot e^{-j \omega t} \Rightarrow \vec{u}_{s}^{\alpha \beta}=\vec{u}_{s}^{x y} \cdot e^{j \omega t} \\
\vec{i}_{s}^{x y}=\vec{i}_{s}^{\alpha \beta} \cdot e^{-j \omega t} \Rightarrow \vec{i}_{s}^{\alpha \beta}=\vec{i}_{s}^{x y} \cdot e^{j \omega t} \\
\vec{\psi}_{s}^{x y}=\vec{\psi}_{s}^{\alpha \beta} \cdot e^{-j \omega t} \Rightarrow \vec{\psi}_{s}^{\alpha \beta}=\vec{\psi}_{s}^{x y} \cdot e^{j \omega t}
\end{array}\right.
$$

Insert

$$
\begin{aligned}
& \vec{u}_{s}^{x y} \cdot e^{j \omega t}=R_{a} \cdot \vec{i}_{s}^{x y} \cdot e^{j \omega t}+\frac{d\left(\vec{\psi}_{s}^{x y} \cdot e^{j \omega t}+L_{a \lambda} \cdot \vec{i}_{s}^{x y} \cdot e^{j \omega t}\right)}{d t}=R_{a} \cdot \vec{i}_{s}^{x y} \cdot e^{j \omega t}+\frac{d\left(\left(\vec{\psi}_{s}^{x y}+L_{a \lambda} \cdot \vec{i}_{s}^{x y}\right) \cdot e^{j \omega t}\right)}{d t} \Rightarrow \\
& \vec{u}^{x y} \cdot e^{j \omega t}=R_{a} \cdot \vec{i}_{s}^{x y} \cdot e^{j \omega t}+\frac{d\left(\vec{\psi}_{s}^{x y}+L_{a \lambda} \cdot \vec{i}_{s}^{x y}\right)}{d t} \cdot e^{j \omega t}+j \omega / e^{j \omega t} \cdot\left(\vec{\psi}_{s}^{x y}+\not L_{a \lambda} \cdot \vec{i}_{s}^{x y}\right) \\
& \vec{u}_{s}^{x y}=R_{a} \cdot \vec{i}_{s}^{x y}+\frac{d\left(\vec{\psi}_{s}^{x y}+L_{a \lambda} \cdot \vec{i}_{s}^{x y}\right)}{d t}+j \omega \cdot\left(\vec{\psi}_{s}^{x y}+L_{a \lambda} \cdot \vec{i}_{s}^{x y}\right)
\end{aligned}
$$

Solution 4.15b cont'd

$\vec{U}_{s}^{x y}=R_{s} \cdot \vec{i}_{s}^{x y}+\frac{d\left(\vec{\psi}_{\delta}^{x y}+L_{s \lambda} \cdot \vec{i}_{s}^{x y}\right)}{d t}+j \cdot \omega \cdot\left(\vec{\psi}_{\delta}^{x y}+L_{s \lambda} \cdot \vec{i}_{s}^{x y}\right)$
Separate the equation in a real and in a imaginary part
Equation 8.31

$$
\begin{aligned}
& \left\{\begin{array}{l}
L_{s x}=\left(L_{m x}+L_{s \lambda}\right) \\
L_{s y}=\left(L_{m y}+L_{s \lambda}\right)
\end{array}\right. \\
& U_{s x}=R_{s} \cdot i_{s x}+\frac{d\left(\psi_{m}+\left(L_{m x}+L_{s \lambda}\right) \cdot i_{s x}\right)}{d t}-\omega_{r} \cdot\left(L_{m y}+L_{s \chi}\right) \cdot i_{s y}= \\
& =R_{s} \cdot i_{s x}+\frac{d\left(\psi_{m}+L_{s x} \cdot i_{s x}\right)}{d t}-\omega_{r} \cdot L_{s y} \cdot i_{s y}
\end{aligned} \begin{aligned}
& U_{s y}=R_{s} \cdot i_{s y}+\frac{d\left(\left(L_{m y}+L_{s \lambda}\right) \cdot i_{s y}\right)}{d t}+\omega_{r} \cdot\left(\psi_{m}+\left(L_{m x}+L_{s \lambda}\right) \cdot i_{s x}\right)= \\
& =R_{s} \cdot i_{s y}+L_{s y} \cdot \frac{d i_{s y}}{d t}+\omega_{r} \cdot\left(\psi_{m}+L_{s x} \cdot i_{s x}\right)
\end{aligned}
$$

Solution 4.15b cont'd

Separate the equation below in real and imaginary parts, see equation (8.31)
$\vec{u}_{s}^{x y}=R_{a} \cdot \vec{i}_{s}^{x y}+\frac{d\left(\vec{\psi}_{s}^{x y}+L_{a \lambda} \cdot \vec{i}_{s}^{x y}\right)}{d t}+j \omega \cdot\left(\vec{\psi}_{s}^{x y}+L_{a \lambda} \cdot \vec{i}_{s}^{x y}\right)$

$$
\left\{\begin{array}{l}
u_{s x}=R_{a} \cdot i_{s x}+\frac{d}{d t}\left(\psi_{m}+L_{m x} \cdot i_{s x}+L_{a \lambda} \cdot i_{s x}\right)-\omega_{r} \cdot\left(L_{m y} \cdot i_{s y}+L_{a \lambda} \cdot i_{s y}\right)=R_{a} \cdot i_{s x}+\frac{d}{d t}\left(\psi_{m}+L_{s x} \cdot i_{s x}\right)-\omega_{r} \cdot L_{s y} \cdot i_{s y} \\
u_{s y}=R_{a} \cdot i_{s y}+\frac{d}{d t}\left(L_{m y} \cdot i_{s y}+L_{a \lambda} \cdot i_{s y}\right)+\omega_{r} \cdot\left(\psi_{m}+L_{m x} \cdot i_{s x}+L_{a \lambda} \cdot i_{s x}\right)=R_{a} \cdot i_{s y}+L_{s y} \cdot \frac{d i_{s y}}{d t}+\omega_{r} \cdot\left(\psi_{m}+L_{s x} \cdot i_{s x}\right)
\end{array}\right.
$$

Exercise 4.16 DC machine voltage equation

An armature winding is designed as a commutator winding, positioned in the rotor.
a. Draw a stylized picture of a cross section of the machine and show the resulting current distribution in the armature circuit that gives maximum torque if $L_{m y}=0$.
b. Given the position of the commutator as in a), form an expression of the torque!
c. Give the voltage equation for the aramature circuit as it is known via the sliding contacts positioned as in b)

Solution 4.16a,b

a) See figure 10.2

b) Torque (Equation 10.1) $\quad T=\psi_{m} \cdot i_{a}$

Solution 4.16c

c) Voltage (Equation 8.31)

See paragraph 10.2, the x-axis windings are never used, the x-axis current is always zero, see equation 10.1

$$
\begin{aligned}
& u_{a x}=R_{s} \cdot \underbrace{i_{a x}}_{=0}+\underbrace{\frac{d}{d t}}_{=0} \underbrace{\psi_{m}}_{\text {constant }}+\frac{d}{d t}(L_{m x} \cdot \underbrace{i_{a x}}_{=0}+L_{a \lambda} \cdot \underbrace{i_{a x}}_{=0})-\omega_{r} \cdot \underbrace{L_{s y}}_{=0} \cdot i_{a y}=0 \\
& u_{a y}=u_{a}=R_{a} \cdot i_{a}+\frac{d}{d t}(\underbrace{\left.L_{m y} \cdot i_{a}+L_{a} \cdot i_{a}\right)+\omega_{r} \cdot(\psi_{m}+L_{a} \cdot \underbrace{i_{a x}}_{=0})=}_{=0} \\
& =R_{a} \cdot i_{a}+L_{a} \cdot \frac{d i_{a}}{d t}+\omega_{r} \cdot \psi_{m}
\end{aligned}
$$

Exercise 4.17 DC machine torque, power and flux

A DC machine has the following ratings:
$\mathrm{U}_{\mathrm{an}}=300 \mathrm{~V}$
$I_{\mathrm{an}}=30 \mathrm{~A}$
$\mathrm{R}_{\mathrm{a}}=1 \Omega$
$\mathrm{L}_{\mathrm{a}}=5 \mathrm{mH}$
$\mathrm{n}_{\mathrm{n}}=1500 \mathrm{rpm}$

Determine the rated torque T_{n}, the rated power P_{n} and the rated magnetization $\Psi_{m n}$.

Solution 4.17

$$
\begin{aligned}
& U_{a n}=300 \mathrm{~V} \\
& I_{a n}=30 \mathrm{~A} \\
& R_{a}=1 \mathrm{ohm} \\
& L_{a}=5 \mathrm{mH} \\
& n_{a}=1500 \mathrm{rpm}
\end{aligned}
$$

At the nominal point, all values are constant
$\begin{aligned} & U_{a}=R_{a} \cdot i_{a}+L_{a} \cdot \frac{d i_{a}}{d t}+e_{a}=\left\{\frac{d i_{a}}{d t}=0\right\}=R_{a} \cdot i_{a}+e_{a} \Rightarrow \\ & \underline{\text { SOLUTION }}\end{aligned}$
Power $P_{\text {motor }}=e_{a} \cdot i_{a}=\left[U_{a}-R_{a} \cdot i_{a}\right] \cdot i_{a}=(300-30 \cdot 1) \cdot 30=8100 \mathrm{~W}$
Torque $T_{n}=\frac{P_{\text {motor }}}{\omega_{n}}=\frac{8100}{\frac{1500}{60} \cdot 2 \pi}=51.6 \mathrm{Nm}$
Flux $\quad \psi_{\omega n}=\frac{e_{a}}{\omega_{n}}=\frac{U_{a}-R_{a} \cdot i_{a}}{\omega_{n}}=\frac{300-30 \cdot 1}{\frac{1500}{60} \cdot 2 \pi}=1.72 \mathrm{Vs}$

Exercise 4.18 DC machine controller

Same data as in 4.17. The machine is fed from a switched converter with the sampling interval $T_{s}=1 \mathrm{~ms}$, and the DC voltage $U_{d 0}=300 \mathrm{~V}$.

Derive a suitable controller for torque control at constant magnetization. The current is measured with sensors that give a maximum signal for $i_{a}=I_{0}=30 \mathrm{~A}$.

A DC machine has the following ratings:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{a}}=1 \Omega \\
& \mathrm{~L}_{\mathrm{a}}=5 \mathrm{mH} \\
& \mathrm{n}_{\mathrm{n}}=1500 \mathrm{rpm}
\end{aligned}
$$

Solution 4.18

$$
\begin{aligned}
& U_{a}=R_{a} \cdot i_{a}+L_{a} \cdot \frac{d i_{a}}{d t}+e_{a} \\
& u_{a}^{*}(k)=R_{a} \cdot \frac{i_{a}(k+1)+i_{a}(k)}{2}+L_{a} \cdot \frac{i_{a}(k+1)-i_{a}(k)}{T_{s}}+e_{a}(k)=R_{a} \cdot \frac{i_{a}^{*}(k)-i_{a}(k)}{2}+R_{a} \cdot i_{a}(k)+\frac{L_{a}}{T_{s}} \cdot\left(i_{a}^{* *}(k)-i_{a}(k)\right)+e_{a}(k) \\
& u_{a}^{*}(k)=\frac{R_{a}}{2} \cdot\left(i_{a}^{*}(k)-i_{a}(k)\right)+R_{a} \cdot i_{a}(k)+\frac{L_{a}}{T_{s}} \cdot\left(i_{a}^{*}(k)-i_{a}(k)\right)+e_{a}(k)=\left(\frac{R_{a}}{2}+\frac{L_{a}}{T_{s}}\right) \cdot\left(i_{a}^{*}(k)-i_{a}(k)\right)+R_{a} \cdot \sum_{n=0}^{k-1}\left(i_{a}^{*}(n)-i_{a}(n)\right)+e_{a}(k) \\
& u_{a}^{*}(k)=\left(\frac{R_{a}}{2}+\frac{L_{a}}{T_{s}}\right) \cdot\left(\left(i_{a}^{*}(k)-i_{a}(k)\right)+\frac{R_{a}}{\left(\frac{R_{a}}{2}+\frac{L_{a}}{T_{s}}\right.} \cdot \sum_{n=0}^{k-1}\left(i_{a}^{*}(n)-i_{a}(n)\right)+e_{a}(k)\right. \\
& u_{a}^{*}(k)=\left(\frac{R_{a}}{2}+\frac{L_{a}}{T_{s}}\right) \cdot\left(\left(i_{a}^{*}(k)-i_{a}(k)\right)+\frac{T_{s}}{\left(\frac{T_{s}}{2}+\frac{L_{a}}{R_{a}} \cdot\right.} \cdot \sum_{n=0}^{k-1}\left(i_{a}^{*}(n)-i_{a}(n)\right)\right)+e_{a}(k) \\
& u_{a}^{*}(k)=\left(\frac{1}{2}+\frac{0.005}{0.001}\right) \cdot\left(\left(i_{a}^{*}(k)-i_{a}(k)\right)+\frac{0.001}{\left(\frac{0.001}{2}+\frac{0.005}{1}\right)} \cdot \sum_{n=0}^{k-1}\left(i_{a}^{*}(n)-i_{a}(n)\right)+u_{a}(k)-1 \cdot i_{a}(k)=\left\{R_{a}=1, L_{a}=0.005, T_{s}=0.001,\right\}=\right. \\
& u_{a}^{*}(k)=5.5 \cdot\left(\left(i_{a}^{* *}(k)-i_{a}(k)\right)+0.182 \cdot \sum_{n=0}^{k-1}\left(i_{a}^{*}(n)-i_{a}(n)\right)\right)+\left(u_{a}(k)-i_{a}(k)\right)
\end{aligned}
$$

Exercise 4.20 PMSM controller

A permanently magnetized synchronous machine has the following ratings:
$\mathbf{U}_{\text {line-to-line }}=220 \mathrm{~V}$
$I_{\mathrm{sn}}=13 \mathrm{~A}$
$\mathrm{n}_{\mathrm{n}}=3000 \mathrm{rpm}$
$R_{a}=0,5 \Omega$
$L_{d}=L_{q}=7 \mathrm{mH}$

The machine is driven by a switched amplifier with the DC voltage $U_{d 0}=350 \mathrm{~V}$. The frequency of the modulating triangular wave $f_{\text {tri }}$ is 1000 Hz . The current sensor measures currents up to a maximum of $\mathrm{I}_{0}=25 \mathrm{~A}$.
Suggest a structure for the control of the torque of the machine together with a set of relevant equations.

Exercise 4.25 Electric car

You are to design an electric car. You have a chassis with space for batteries and an electric motor. The battery weight is 265 kg , the storing capacity is
32 kWh and can be charged with 5 kW . The battery no load voltage e_{0} ranges from 170 V to 200 V and its inner resistance is $R_{b}=0,14 \Omega$. The motor is a two-pole three phase alternating current motor with the rating 50 kW at the rated speed $n_{n m}$ $=3000 \mathrm{rpm}$. The car has two gears, which give the speed $120 \mathrm{~km} / \mathrm{h}$ at the rated speed of the motor, corresponding to the net gear $1 / 2,83$. The weight of the car is 1500 kg including the battery weight. The requirement is to manage a 30% uphill.

Data		
Motor, 2-pole, 3 phase AC		
Rated power	50 kW	
Rated motor speed		3000 rpm
Battery		
Voltage		170-200 V
Charge capacity		32 kWh
Max charging power	5 kW	
Internal resistance		0.14 ohm
Weight		265 kg
Vehicle		
Weight		1500 kg (incl battery)
Vehicle speed at rated motor speed	$120 \mathrm{~km} / \mathrm{h}$	
Gear		$1 / 2.83$ at $120 \mathrm{~km} / \mathrm{h}$
Rated uphill	30\%	

Exercise 4.25 cont'd

a) What is the rated torque of the motor?
b) What rated stator voltage would you choose when you order the motor?
c) Which is the minimum rated current for the transistors of the main circuit?
d) What gearing ratio holds for the low gear?
e) When driving in $120 \mathrm{~km} / \mathrm{h}$, the power consumption is $370 \mathrm{~Wh} / \mathrm{km}$. How far can you drive if the batteries are fully loaded when you start? For a certain drive cycle in city traffic, the average consumption is 190 $\mathrm{Wh} / \mathrm{km}$. How far can the car be driven in the city?
f) What is the cost/10 km with an energy price of 2 SEK/kWh?

Solution 4.25a,b

a) Angular speed at rated speed $\omega=\frac{3000}{60} \cdot 2 \cdot \pi=314$

Torque at rated speed $T=\{$ Power $P=T \cdot \omega\}=\frac{P}{\omega}=\frac{50000}{314}=159 \mathrm{Nm}$
b) $P=50 \mathrm{~kW}=u \cdot i=\left(e_{0}-R_{i} \cdot i\right) \cdot i=\left\{\begin{array}{l}e_{0}=170-200 \mathrm{~V} \\ u s e 170 \mathrm{~V}\end{array}\right\}=(170-0.14 \cdot i) \cdot i=170 \cdot i-0.14 \cdot i^{2}$
$i^{2}-\frac{170 \cdot i}{0.14}+\frac{50000}{0.14}=0 \Rightarrow i=\frac{85}{0.14} \pm \sqrt{\left(\frac{85}{0.14}\right)^{2}-\frac{50000}{0.14}}=500 \mathrm{~A}$
$u=170-0.14 \cdot 500=100 V_{d c}$
With symmetrized 3 - phase ac voltage $\hat{u}_{L L}=100 V_{d c} \Rightarrow u_{L L}=\frac{u_{d c}}{\sqrt{2}} \approx 71 \mathrm{~V}$

Solution 4.25c

c) Assume power factor $=0.9$
$P_{a c}=\sqrt{3} \cdot u_{L L} \cdot I_{\text {phase }} \cdot 0.9 \Rightarrow 50000=\sqrt{3} \cdot 71 \cdot I_{\text {phase }} \cdot 0.9$
$I_{\text {phase_eff }}=\frac{50000}{\sqrt{3} \cdot 71 \cdot 0.9}=452 \mathrm{~A}$
$\hat{I}_{\text {phase }}=639 \mathrm{~A}$
See figure above, " 1 " means the transistor is conducting, " O " the transistor is not conducting E.g. the top left transistor is the only transistor in upper position which is conducting, thus the full dc-current is flowing through this transistor,

Rated transistor current is 639 A

Solution 4.25d

d) The uphill slope is 30%. $\arctan (\alpha)=0.3 \Rightarrow \alpha=17^{\circ}$ The requested force $F=1500 \cdot 9.81 \cdot \sin \left(17^{\circ}\right)=4228 \mathrm{~N}$
Assume wheel radius $r=0.3 m$
Torque $T=F \cdot r=4228 \cdot 0.3=1268 \mathrm{Nm}$
The motor torque at rated power $T_{\text {motor }}=159 \mathrm{Nm}$
Assume the low gear, the gear ratio $=\frac{1268}{159}=8.0$

Solution 4.25 e,f

e) Maximum battery charg $e=$
$32 k W h$
Battery consumption at $120 \mathrm{~km} / \mathrm{h}=$
$370 \mathrm{~Wh} / \mathrm{km}$
How far with fully loaded battery at $120 \mathrm{~km} / \mathrm{h}=\frac{32}{0.37} \approx 86 \mathrm{~km}$

Battery consumption in average city traffic $=$
How far in average city traffic $=\frac{32}{0.19} \approx$
f) Cost/ 10 km at $120 \mathrm{~km} / \mathrm{h}=10 \cdot 0.37 \cdot 2$ SEK $/ \mathrm{kWh}=\quad 7.40 S E K$ Cost $/ 10 \mathrm{~km}$ in average city traffic $=10 \cdot 0.19 \cdot 2$ SEK $/ k W h=3.80$ SEK

5

Exercises on PMSM

Exercise 5.1 Flux and noload voltage

A permanent magnetized synchronous machine is magnetized with at the most $0,7 \mathrm{Vs}$ linkage flux in one phase. It is not connected.
a. How large is the flux vector as a function of the rotor position?
b. How large is the induced voltage vector as a function of rotor position and speed?
c. At which speed is the voltage too large for a frequency converter with a dc voltage of 600 V ?

Solution 5.1a

Given $\hat{\psi}_{\text {phase }}=0.7 \mathrm{Vs}$
No load, open stator
a) Sought $\quad \vec{\psi}=f\left(\Theta_{r}\right)$

From equation (3.4) it is learned that the magnitude of the vector equals the "phase - to - phase" RMS - value of the same quantity,
that means

$$
\left|\vec{\psi}_{m}\right|=\frac{\sqrt{3}}{\sqrt{2}} \cdot \hat{\psi}_{p h a s e}=0.86 \mathrm{Vs}
$$

The flux vector is oriented along the PMSM rotor magnet position

Solution 5.1b,c

b) From equation (3.5)E $\cdot e^{j \omega t}=\vec{e}=\omega \cdot \vec{\psi}_{m} \cdot e^{j \frac{\pi}{2}}$ the induced voltage is ω times the flux and advanced $\frac{\pi}{2}$ in phase
c) According to figure 2.24 , the voltage vectors are $\sqrt{\frac{2}{3}} \cdot U_{d c}$ in magnitude.

The longest vector that always can be sustained is the radius of the circle inscribed in the hexagon

$$
\begin{aligned}
& |U|_{\max }=\sqrt{\frac{2}{3}} \cdot U_{d c} \cdot \cos \left(\frac{\pi}{6}\right)=\sqrt{\frac{2}{3}} \cdot U_{d c} \cdot \frac{\sqrt{3}}{2}=\frac{U_{d c}}{\sqrt{2}}=424 \mathrm{~V} \\
& E_{\max }=\omega_{r, \max } \cdot \sqrt{\frac{3}{2}} \cdot \hat{\psi}_{\text {phase }} \Rightarrow \omega_{r, \max }=424 \cdot \frac{\sqrt{2}}{\sqrt{3} \cdot 0.7}=495 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Exercise 5.2 Inductance and torque generation

A permanent magnetized synchronous machine has a cylindrical rotor with $L_{m x}=$ $L_{m y}=L_{m}=2 \mathrm{mH}$. The magnetization is the same as in $4.10,7 \mathrm{Vs}$ linkage flux in one phase. The machine is controlled so that the stator current along the x axle is zero ($i_{s x}=0$).
a) How large torque can the machine develop if the phase current s limited to 15 A RMS?
b) Draw the flux linkage from the permanent magnets and from the stator current in (x, y) coordinates together with induced voltage and voltage for the frequency 25 Hz and the stator resistance $0,2 \Omega$!
c) How large stator current is required to reduce the flux to zero?

Solution 5.2a

Data

Linked flux
Frequency
Stator resis \tan ce

Max current

Induc $\tan c e$
Assume

$$
\psi_{m}=0.7 \mathrm{Vs}
$$

$$
25 H z
$$

$$
0.2 \mathrm{ohm}
$$

$$
\left\{\begin{array}{l}
\left.i_{s x}=0 A(\text { in exercise } a) \text { and } b\right) \\
i_{p h a s e_{-} R M S_{-} \max }=15 A
\end{array}\right.
$$

$$
L_{m x}=L_{m y}=L_{m}=2 m H
$$

$$
L_{s \lambda}=0
$$

a) Max Torque, see equation (11.7)
$\left|i_{s y_{-} R M S_{-} \max }\right|=\{a b c \Rightarrow \alpha \beta\}=\sqrt{\frac{3}{2}} \cdot i_{\text {phase }_{-} R M S_{-} \max }$
$\left|\hat{i}_{s y_{-} \max }\right|=\sqrt{2} \cdot\left|i_{s y_{-} R M S_{-} \max }\right|=\sqrt{2} \cdot \sqrt{\frac{3}{2}} \cdot i_{\text {phase_ }_{-} R M S_{-} \max }=\sqrt{3} \cdot 15=26 \mathrm{~A}$
$T_{\max }=\sqrt{\frac{3}{2}} \cdot i_{s y} \cdot \psi_{m}+\left(L_{m x}-L_{m y}\right) \cdot i_{s x} \cdot i_{s y}=\left\{i_{s x}=0\right\}=\sqrt{\frac{3}{2}} \cdot i_{s y} \cdot \psi_{m}=\sqrt{\frac{3}{2}} \cdot 26 \cdot 0.7=22.3 \mathrm{Nm}$

Solution 5.2b,c

b) See equation (11.3)
$\hat{u}_{s}=R_{s} \cdot \hat{i}_{s}+\frac{d}{d t}\left(\psi_{m}+L_{s} \cdot \hat{i}_{s}\right)+j \cdot \omega_{r} \cdot\left(\psi_{m}+L_{s} \cdot \hat{i}_{s}\right)=\left\{\hat{i}_{s}\right.$ and ψ_{m} are const $\}=R_{s} \cdot \hat{i}_{s}+j \cdot \omega_{r} \cdot\left(\psi_{m}+L_{s} \cdot \hat{i}_{s}\right)=$
$=0.2 \cdot j 26+j \cdot 2 \pi \cdot 25 \cdot\left(\sqrt{\frac{3}{2}} \cdot 0.7+0.002 \cdot j 26\right)=-8.17+j \cdot 134.4=135 \mathrm{~V}$
c) Find the $i_{s x}$ for which the flux is reduced to zero $\vec{\psi}_{s}=\left(\vec{\psi}_{m}+L_{s x} \cdot i_{s x}\right)+j \cdot L_{s y} \cdot i_{s y}=0+j 0$ $i_{s y}=0$
$i_{s x}=-\frac{\sqrt{\frac{3}{2}} \cdot \psi_{m}}{L_{s x}}=-428 \mathrm{~A}$

Exercise 5.3 PMSM Control

The machine in example 5.2 is vector controlled. The voltage is updated every $100 \mu \mathrm{~s}$, i. e. the sampling interval is $T_{s}=100 \mu \mathrm{~s}$. The machine shall make a torque step from 0 to maximum torque when the rotor is at standstill. The DC voltage is 600 V .
a. Determine the voltage that is required to increase the current $i_{\text {sy }}$ from zero to a current that corresponds to maximum torque in one sample interval!
b. Is the DC voltage sufficient?

Solution 5.3a

Data

Sampling time	$T_{s}=100 \mu s$
Torque, see execisen $5.2 a$	22.3 Nm
Dclink voltage	$U_{d c}=600 \mathrm{~V}$
Start from s tan dstill	$\omega=0$

a) It is a 3 - phase load, see the theory in chapter 3.7, particularly equ (3.17) and (3.18) Since it will be a step in $i_{s y}$ (called i_{q} in the equations) following \exp ressions are valid

$$
\begin{aligned}
& u_{x}^{*}(t)=\left(\frac{L}{T_{s}}+\frac{R}{2}\right) \cdot\left((0-0)+\frac{T_{s}}{\left(\frac{L}{R}+\frac{T_{s}}{2}\right)} \cdot \sum_{0}^{k-1}(0-0)\right)-\underbrace{\omega}_{=0} \cdot L_{s} \cdot i_{q}=0 \\
& u_{y}^{*}(t)=\left(\frac{L}{T_{s}}+\frac{R}{2}\right) \cdot\left((26-0)+\frac{T_{s}}{\left(\frac{L}{R}+\frac{T_{s}}{2}\right)} \cdot \sum_{0}^{k-1}(0-0)\right)+\underbrace{\omega}_{=0} \cdot(\psi_{m}+L_{s} \cdot \underbrace{i_{d}}_{=0})=\left(\frac{L}{T_{s}}+\frac{R}{2}\right) \cdot 26=\left(\frac{2 \cdot 10^{-3}}{1 \cdot 10^{-4}}+\frac{0.2}{2}\right) \cdot 26=522 V
\end{aligned}
$$

Solution 5.3b

b) The max imum line - to - line voltage from a dclink voltage is $=\frac{U_{d c}}{\sqrt{2}}=424 \mathrm{~V}$

If we are lucky and the step in $u_{y}^{*}(k)$ happens to point in the direction of one of the six voltage vectors defining the
hexagon we will havethe voltage $\sqrt{\frac{2}{3}} \cdot U_{d c}=490 \mathrm{~V}$, still too low than the requested 522 V . The step will take morethan one sampling int erval

Exercise 5.4 Torque

A two-pole permanently magnetized synchronous machine with the parameters Lmx=Lmy=Lm=15mH is used in an airplane and is therefore driven with stator frequencies up to 400 Hz . The stator resistance is negligable. The phase current is limited to 10A rms. The motor is fed by a converter with the DC voltage 600V.
a. Determine the magnetization from the permanent magnets considering the case when all voltage is needed and the machine is developing full torque (all the current along the q-axle) and 200 Hz stator frequency!
b. Determine the torque!
c. Determine the torque at 400 Hz stator frequency provided a part of the current is needed for demagnetization!

Solution 5.4a,b

Data	
$P M S M$	$2-$ pole
$L_{s x}=L_{s y}$	15 mH
$f_{\max }$	400 Hz
R_{s}	0Ω
$I_{\text {phase }}$	10 A
Dclink voltage $U_{d c}=$	600 V

a) Sought ψ_{m} at max voltage and full torque, and no need for field weakening at this low speed $L_{s x}=L_{s y}$, thus no reluc \tan ce torque
$f=200 \mathrm{~Hz}$
Start with equation (11.2)
$\vec{u}_{s}=R_{s} \cdot \vec{i}_{s}+\frac{d}{d t}\left(\psi_{m}+L_{s} \cdot \vec{i}_{s}\right)+j \cdot \omega_{r} \cdot\left(\psi_{m}+L_{s} \cdot \vec{i}_{s}\right)=\left\{R_{s}=0\right.$. Assumestationarity $\left.\Rightarrow \frac{d}{d t}=0\right\}=$
$=j \cdot \omega_{r} \cdot \psi_{m}+j \cdot \omega_{r} \cdot L_{s} \cdot \overrightarrow{i_{s}} \Rightarrow|\vec{u}|=\left|j \cdot \omega_{r} \cdot \psi_{m}+j \cdot \omega_{r} \cdot L_{s} \cdot \overrightarrow{i_{s}}\right|$
$\left|\frac{U_{d c}}{\sqrt{2}}\right|=\sqrt{\left(2 \pi \cdot 200 \cdot \psi_{m}\right)^{2}+\left(2 \pi \cdot 200 \cdot L_{s} \cdot \vec{i}_{s}\right)^{2}} \Rightarrow \psi_{m}=\frac{\sqrt{\frac{600^{2}}{2}-(2 \pi \cdot 200 \cdot 0.015 \cdot 10 \cdot \sqrt{2})^{2}}}{2 \pi \cdot 200}=0.26 \mathrm{Vs}$
b) $T=\psi_{m} \cdot i_{s y}=0.26 \cdot 10 \cdot \sqrt{3}=4.5 \mathrm{Nm}$

Solution 5.4c

c) In this case $i_{s x}<>0 \sin$ ce field weakening is used
$L_{s x}=L_{s y}$, thus no reluc \tan ce torque
$f=400 \mathrm{~Hz}$
Assume stationarity $\Rightarrow \frac{d}{d t}=0$
$\left\{\begin{array}{l}|\vec{u}|=\left|R_{s} \cdot \vec{i}_{s}+j \omega_{r} \cdot \psi_{m}+j \omega_{r} \cdot L_{s} \cdot \vec{i}_{s}\right|=\left\{R_{s}=0\right\}=\sqrt{\left(\omega_{r} \cdot L_{s} \cdot i_{s y}\right)^{2}+\left(\omega_{r} \cdot \psi_{m}+\omega_{r} \cdot L_{s} \cdot i_{s x}\right)^{2}}=424 \mathrm{~V} \\ \left|i_{s}\right|=\sqrt{i_{s x}{ }^{2}+i_{s y}{ }^{2}}=10 \sqrt{3}\end{array}\right.$
$|u|^{2}=\omega_{r}{ }^{2} \cdot L_{s}{ }^{2} \cdot i_{s y}{ }^{2}+\omega_{r}{ }^{2} \cdot \psi_{m}{ }^{2}+\omega_{r}{ }^{2} \cdot L_{s}{ }^{2} \cdot i_{s x}{ }^{2}+2 \cdot \omega_{r} \cdot \psi_{m} \cdot \omega_{r} \cdot L_{s} \cdot i_{s x}=$
$=\underbrace{\omega_{r}}_{25133}{ }^{2} \cdot(\underbrace{L_{s}}_{0.015}{ }^{2} \cdot \underbrace{\left(i_{s x}{ }^{2}+i_{s y}{ }^{2}\right)}_{10 \sqrt{3}^{2}}+\underbrace{\psi_{m}}_{0.26}{ }^{2}+2 \cdot \underbrace{\psi_{m}}_{0.26} \cdot \underbrace{L_{s}}_{0.015} \cdot i_{s x})=424^{2}$
$\left\{\begin{array}{l}i_{s x}=\frac{\left(\frac{424}{2513.3}\right)^{2}-0.015^{2} \cdot 10^{2} \cdot \sqrt{3}^{2}-0.26^{2}}{2 \cdot 0.26 \cdot 0.015}=13.7 \mathrm{~A} \\ i_{s y}=\sqrt{(10 \cdot \sqrt{3})^{2}-13.7^{2}}=10.6 A\end{array}\right.$
$T=10.6 \cdot 0.26=2.76 \mathrm{Nm}$
I.e.the torque has dropped to about half of the torque at 200 Hz , which is not a surprise (abit morethan half \sin ce we use 10.6 A instead of $10 \sqrt{3}=17.3$ A)

Exercise 5.5 Drive system

You are designing an electric bicycle with a synchronous machine as a motor, coupled to the chain by a planetary gear. The power of the motor is 200 W and it has 10 poles. The speed of the motor is 1000 rpm at full power. The motor is fed from a three phase converter with batteries of 20 V . The stator resistance and inductance can be neglected.
a. Determine the magnetization expressed as a flux vector at rated operational with full voltage from the frequency converter!
b. Determine the phase current at full torque!
c. Determine the moment of inertia if the bicycle and its driver weigh 100kg, the gear ratio is $1: 10$ and the rated speed is $25 \mathrm{~km} / \mathrm{h}!$ Om cykel med förare väger 100 kg , hur stort tröghetsmoment upplever drivmotorn om utväxlingen är 1:10 och märkhastigheten är 25 km / h ?
d. How long is the time for accelaration?

Solution 5.5a

Data

$$
\begin{array}{ll}
\text { PMSM } \quad p=10-\text { pole } \\
\text { Power } & 200 \mathrm{~W} \\
\text { Dclink voltage } U_{d c}= & 20 \mathrm{~V} \\
\text { speed at full power } & 1000 \mathrm{rpm} \\
L_{s x}=L_{s y} & 0 \mathrm{mH}, \text { no reluct. torque } \\
R_{s} & 0 \Omega
\end{array}
$$

a) Magnetization flux vector $\left|\psi_{s}\right|$ at rated, nom speed. Assume stationarity, $\Rightarrow \frac{d}{d t}=0$
$\left|\vec{u}^{x y}\right|=\left|j \omega_{r} \cdot \psi_{s}\right|$, see equ (11.2)

$$
\left|\vec{\psi}_{s}\right|=\frac{\frac{U_{d c}}{\sqrt{2}}}{\omega_{r, e l}}=\frac{U_{d c}}{\sqrt{2} \cdot \omega_{r, \text { mech }} \cdot \frac{p}{2}}=\frac{20}{\sqrt{2} \cdot 2 \pi \cdot \frac{1000}{60} \cdot \frac{10}{2}}=0.027 V s \approx \psi_{p m}, \text { as } L_{s}=0
$$

Solution 5.5b,c,d

b)Torque $\quad T_{\text {mech }}=\frac{p}{2} \cdot T_{e l}=\frac{p}{2} \cdot \psi_{p m} \cdot i_{s y}=\frac{P}{\omega_{r, \text { mech }}}=\frac{200}{2 \pi \cdot \frac{1000}{60}}=1.91 \mathrm{Nm}$
$i_{s y}=\frac{T_{\text {mech }}}{\frac{p}{2} \cdot \psi_{p m}}=\frac{1.91}{\frac{10}{2} \cdot 0.027}=14.15 \mathrm{~A}$
$I_{s}=\frac{14.15}{\sqrt{3}}=8.17 \mathrm{~A}$
c) Inertia

$$
\text { Energy } \frac{1}{2} \cdot J \cdot \omega_{r, \text { mech }}^{2}=\frac{1}{2} \cdot m \cdot v^{2} \Rightarrow J_{e k v}=m \cdot\left(\frac{v}{\omega_{r, \text { mech }}}\right)^{2}=100 \cdot\left(\frac{\frac{25}{3.6}}{104.72}\right)^{2}=0.44 \mathrm{kgm}^{2}
$$

d)Accelerati on time $\quad \omega_{r, \text { mech }}=\int \frac{T_{\text {mech }}}{J_{\text {ekv }}} d t=\frac{T_{\text {mech }}}{J_{\text {ekv }}} \cdot t_{\text {acc }} \Rightarrow t_{\text {acc }}=\frac{\omega_{r, \text { mech }} \cdot J_{\text {ekv }}}{T_{\text {mech }}}=\frac{104.72 \cdot 0.44}{1.91}=24.1 \mathrm{~s}$

Exam 2012-05-21

Exercise Exam 2012-05-21 1a - The four quadrant DC-DC converter

a) Draw a four quadrant $D C / D C$ converter with a three phase diode rectifier connected to the power grid. Between the rectifier and the DC link capacitor is a BIG inductor connected. This inductor, the dc-link capacitor and protection against too high inrush currents should be included in the drawing. The transistors are of IGBT-type.
b) The three-phase grid, to which the three phase diode rectifier is connected, has the line-to-line voltage $400 \mathrm{~V}_{\mathrm{rms}}$ at 50 Hz . The bridge output voltage of the four quadrant DC/DC converter is 430 V .
Calculate the average voltage at the rectifier dc output.
Calculate the duty cycle of the four quadrant $\mathrm{dc} / \mathrm{dc}$ converter.
c) Due to the big inductor between the rectifier and the DC link capacitor the rectifier output DC-current can be regarded as constant, 172 A . The 4Q bridge load can be regarded as a constant voltage in series with a 5.1 mH inductance.

- The rectifier diode threshold voltage is 1.0 V and its differential resistance is 2.2 mohm.
- The rectifier diode turn-on and turn-off losses can be neglected
- The IGBT transistor threshold voltage is 1.4 V and its differential resistance is 12 mohm.
- The turn-on loss of the IGBT transistor is 65 mJ and its turn-off loss is 82 mJ .
- The IGBT diode threshold voltage is 1.1 V and its differential resistance is 9.5 mohm.
- The IGBT diode turn-off losses is 25 mJ , while the turn-on loss can be neglected
- Both the IGBT transistor and the IGBT diode turn-on and turn-off losses are nominal values at 900 V DC link voltage and 180 A turn-on and turn-off current.
- The switching frequency is 2 kHz .

Make a diagram of the 4Q load current
Calculate the rectifier diode losses.
Calculate the IGBT transistor losses of each IGBT in the four quadrant converter.
Calculate the IGBT diode losses of each IGBT in the four quadrant converter.
d) Which is the junction temperature of the IGBT transistor and of the IGBT diode, and which is the junction temperature of the rectifier diodes?

- \quad The thermal resistance of the heatsink equals $0.025 \mathrm{~K} / \mathrm{W}$?
- The thermal resistance of the IGBT transistor equals 0.043 K/W?
- The thermal resistance of the IGBT diode equals $0.078 \mathrm{~K} / \mathrm{W}$?
- The thermal resistance of the rectifier diode equals $0.12 \mathrm{~K} / \mathrm{W}$?
- The ambient temperature is $42^{\circ} \mathrm{C}$.
- The rectifier diodes and the four quadrant converter IGBTs share the heatsink

Solution Exam 2012-05-21 1a

Solution Exam 2012-05-21 1b

Average DC voltage

(Since the rectifier is loaded with a BIG inductor and in stationary state, the DC link voltage must be equal to the average of the rectified grid voltage)

4Q average bridge voltage

(This is given in the question)
$4 Q$ output voltage duty cycle
(The 4Q output voltage is modulated to 430 V from 540 V DC))

$$
U_{d c 4 Q C}=430 \mathrm{~V}
$$

$$
U_{d c_{-} a v e}=\frac{3}{\pi} \cdot 400 \cdot \sqrt{2} \mathrm{~V}=540 \mathrm{~V}
$$

$$
D=\frac{430}{540}=0.8
$$

Solution Exam 2012-05-21 1c_1

Rectifier diode current
Rectifier diode threshold voltage
Rectifier diode diff resistance
Rectifer diode on state voltage
Rectifier diode power loss
Rectifer diode thermal resistance
Continous rectifier output current
The continous 4Q load current

172 A
1.0 V
2.2 mohm
$1+172 * 0.0022=1.38 \mathrm{~V}$
1.38*172*0.33=78 W (conducting 33\% of time)
$0,12 \mathrm{~K} / \mathrm{W}$
172 A
172/0.8=215 A (to maintain the power)

Solution Exam 2012-05-21 1c_2

$4 Q$ load current
4Q load inductance
$I_{\text {pulse,avg }}=215 \mathrm{~A}$
5.1 mH

Only the upper left and lower right transistors have losses and the lower left and upper right diodes have losses. The other semiconductors do not conduct since the 4Q output current is strictly positive.

The load current ripple can be calculated as:

$$
\Delta i=\frac{u-e}{L} \Delta t=\frac{540-430}{0.0051} 0.8 * \frac{1}{2 * 2000}=4.3 \mathrm{~A}
$$

The "duty cycle" of the upper left, and lower right, transistor current is:

$$
D_{t r}=1-\frac{D}{2}=0.9
$$

The average transistor current is

$$
i_{\text {T.ave }}=D_{t r} * I_{\text {pulse,avg }}=194 \mathrm{~A}
$$

The rms value of the transistor currents is:

$$
i_{T r, r m s}=\sqrt{D_{t r} *\left(i_{1}^{2}+\Delta i * i_{1}+\frac{\Delta i^{2}}{3}\right)}=204 \mathrm{~A}
$$

Solution Exam 2012-05-21 1c_3

The "duty cycle" of the upper left, and lower right, diode current is:

$$
D_{d} \frac{D}{2}=0.1
$$

The average diode current is

$$
i_{D, a v e}=D_{t r} * I_{p u l s, a v g}=21.5 \mathrm{~A}
$$

The rms value of the transistor currents is:

$$
i_{D, r m s}=\sqrt{D_{d} *\left(i_{1}^{2}+\Delta i * i_{1}+\frac{\Delta i^{2}}{3}\right)}=68 \mathrm{~A}
$$

Upper right transistor (Red) \& Diode (Blue)

Lower right transistor (Red) \& Diode (Blue)

Solution Exam 2012-05-21 1c_4

4QC transistor rms-current 204A
4QC transistor avg-current 194A
4QC transistor threshold voltage $\quad 1.4 \mathrm{~V}$
4QC transistor diff resistance
12 mohm
4QC transistor turn-on loss
65 mJ
4QC transistor turn-off loss
82 mJ
4QC transistor thermal resistance
0,043 K/W

$$
\begin{aligned}
& P_{\text {onstate }}=1.4 \cdot 194+204^{2} \cdot 0.012=771 \mathrm{~W} \\
& P_{\text {switch }}=2000 \cdot\left(0.065 \cdot \frac{210.7}{180}+0.082 \cdot \frac{219.3}{180}\right) \cdot \frac{540}{900}=211 \mathrm{~W} \\
& P_{\text {total }}=771+211=982 \mathrm{~W}
\end{aligned}
$$

Solution Exam 2012-05-21 1c_5

4QC diode threshold voltage
4QC diode diff resistance
4QC diode turn-off losses
4QC diode thermal resistance
1.1 V
9.5 mohm

25 mJ
. $078 \mathrm{~W} / \mathrm{K}$

$$
\begin{aligned}
& \left\{\begin{array}{l}
I_{\max }=219.3 \mathrm{~A} \\
I_{\min }=210.7 \mathrm{~A}
\end{array}\right. \\
& \left\{\begin{array}{l}
I_{\text {rms }}=\sqrt{0.1 \cdot\left(\frac{219.3^{2}+219.3 \cdot 210.7+210.7^{2}}{3}\right)}=68.0 \mathrm{~A} \\
I_{\text {avg }}=0.1 \cdot\left(\frac{219.3+210.7}{2}\right)=21.5 \mathrm{~A}
\end{array}\right. \\
& \left\{\begin{array}{l}
P_{\text {onstate }}=1.1 \cdot 21.5+68^{2} \cdot 0.0095=67.6 \mathrm{~W} \\
P_{\text {switch }}=2000 \cdot 0.025 \cdot \frac{210.7}{180} \cdot \frac{540}{900}=35.1 \mathrm{~W} \\
P_{\text {total }}=67.6+35.1=103 \mathrm{~W}
\end{array}\right.
\end{aligned}
$$

Solution Exam 2012-05-21 1c_6

Upper left IGBT transistor loss	982 W
Upper right IGBT transistor loss	0 W
Lower right IGBT transistor loss	982 W
Lower left IGBT transistor loss	0 W
Upper right IGBT diode loss	103 W
Upper left IGBT diode loss	0 W
Lower left IGBT diode loss	103 W
Lower right IGBT diode loss	0 W

Solution Exam 2012-05-21 1d

Rectifier diode (6)	IGBT diode (2)	IGBT transistor (2)
Loss each 78 W	Loss each 103 W	Loss each 982 W
Rth diode $0.12 \mathrm{~K} / \mathrm{W}$	Rth diode $0.078 \mathrm{~K} / \mathrm{W}$	Rth trans $0.043 \mathrm{~K} / \mathrm{W}$
Temp diff $9.4^{\circ} \mathrm{C}$	Temp diff $8.0^{\circ} \mathrm{C}$	$\underline{\text { Temp diff } 42.2^{\circ} \mathrm{C}}$

```
Heatsink
Contribution fron 6 rectifier diodes and from two IGBT.
Heatsink thermal resistance 0.025 K/W
Ambient temperature }42\mp@subsup{}{}{\circ}\textrm{C
Total loss to heatsink \quad6*78+2*103+2*982=2638 W
Heatsink sink temperature 42+2656*0.025=108 '}\textrm{C
Junction temperature
Rectifier diode 108+9.4=117 }\mp@subsup{}{}{\circ}\textrm{C
IGBT diode 108+8=116 '}\textrm{C
IGBT transistor }\quad108+42.2=150\mp@subsup{0}{}{\circ}\textrm{C
```


Exam 201205212 - Snubbers, DC/DC converter, semiconductor

a. Draw an IGBT equipped step down chopper (buck converter)
with an RCD snubber. The dclink voltage on the supply side is 250 V and the load voltage is 175 V .
Give a detailed description of how the RCD charge-discharge snubber should operate. Explain why the snubbers are needed
b. Calculate the snubber capacitor for the commutation time
0.012 ms .

The load current is 12 A , assumed constant during the commutation.
Calculate the snubber resistor so the discharge time (3 time constants)
of the snubber capacitor is less than the IGBT on state time.
The switch frequency is 1.5 kHz

Exam 201205212 - Snubbers, DC/DC converter, semiconductor

c. Draw the main circuit of a forward DC/DC converter.

The circuit should include DM-filter (differential mode),
CM (common mode)
filter, rectifier, dc link capacitors, switch transistor and a simple output filter.
The circuit should also include snubbers.
d. Draw the diffusion structure of a MOSFET. In the figure the different doping areas must be found. Draw where in the structure the unwanted stray transistor effect can be found. What is done to avoid this effect.
Also draw where in the structure
the anti-parallel diode effect can be found.

Solution Exam 2012-05-21 2a

At turn off of transistor T, the current i commtutates over to the capacitor C via diode D. The capacitor C charges until the potential of the transistor emitter reduces till the diode $F D$ becomes forward biased and thereafter the load current $i_{\text {load }}$ flows through diode $F D$ and the current $i=0$.

A turn on of the transistor T, the capacitor C is discharged via the the transistor T and resistor R. The diode $F D$ becomes reverse biased and the current i commutates to the transistor T.

Solution Exam 2012-05-21 2b

At turn off of transistor T, the capacitor C charges until the potential of the transistor emitter reduces till the diode $F D$ becomes forward biased and thereafter the load current commutates to the freewheeling diode.
$i=C \cdot \frac{d u}{d t} \Rightarrow C=\frac{i \cdot d t}{d u}=\frac{12 \cdot 12 \cdot 10^{-6}}{250}=0.58 \mu F$
A turn on of the transistor T the current i commutates to the transistor T, and the capacitor C is discharged via the the transistor T and resistor R. As the load voltage is 175 V the duty cycle is 70%. The switching frequency is 1.5 kHz and the on state time is 0.47 ms , and thus the time constant $=0.16 \mathrm{~ms}$
$\tau=C \cdot R \Rightarrow R=\frac{\tau}{C}=\frac{156 \cdot 10^{-6}}{0.58 \cdot 10^{-6}}=269 \Omega$

Solution Exam 2012-05-21 2c

Forward converter with snubbers
and common mode (CM) and differential mode (DM) filter

Solution Exam 2012-05-21 2d

Diffusion structure of a MOSFET

The npn-transistor structure is formed of the n^{+}, the p (body) and the n^{-}(drift region), which cannot be turned off.
The gate metallisation short circuits the $n+$ and the p (body) to avoid turning on this unwanted transistor

Exercise Exam 20120521 3_1-The buck converter as battery charger

A battery charger is supplied from a symmetrical single phase system.
A dc voltage is created by a two pulse diode bridge and a 2-quadrant dc-converter is used for the charge current control.

Data: $\quad U_{1 r m s}=$ the phase-voltage rms value $=220 \mathrm{~V}, 50 \mathrm{~Hz}$.
The switching frequency is $f=4 \mathrm{kHz}$.
$L=4 \mathrm{mH}$ and $\mathrm{R}=0$ Ohms.
$U_{\text {batt }}=100 \mathrm{~V}$ and is approximated to be independent of the charge current.

Exam 20120521 3_2-The buck converter as battery charger

a) What dc link voltage Ud will you get I) when the charging current is zero and II) when the charging current is non-zero with a perfectly smooth rectified current?
b) Start with the electrical equation for the load and derive a suitable current control algorithm, giving all approximations you use.
c) Draw a current step from 0 A till 10 A in the load current. The modulating wave (um), the voltage reference (u^{*}), the output voltage (u) and current (ibatt) must be shown. Indicate the sampling frequency you use in relation to the switching frequency.

Solution Exam 2012-05-21 3a

Average dc voltage with average dc current

$$
U_{d c_{-} a v e}=\frac{2}{\pi} \cdot 220 \cdot \sqrt{2} V=198 \mathrm{~V}
$$

$$
U_{d c_{-} \max }=220 \cdot \sqrt{2} \mathrm{~V}=311 \mathrm{~V}
$$

Max dc voltage with zero dc current

Solution Exam 20120521 3b_1

Current controller with fast computer

$$
\begin{aligned}
& u=R \cdot i+L \cdot \frac{d i}{d t}+e \\
& \frac{\int_{k \cdot T_{s}}^{(k+1) T_{s}} u \cdot d t}{\boldsymbol{T}_{s}}=\frac{R \cdot \int_{k \cdot T_{s}}^{(k+1) T_{s}} i \cdot d t+L \cdot \int_{k \cdot T_{s}}^{(k+1) T_{s}} \frac{d i}{d t} \cdot d t+\int_{k \cdot T_{s}}^{(k+1) T_{s}} e \cdot d t}{T_{s}} \\
& \bar{u}(k, k+1)=R \cdot \bar{i}(k, k+1)+L \cdot \frac{i(k+1)-i(k)}{T_{s}}+\bar{e}(k, k+1)
\end{aligned}
$$

Solution Exam 20120521 3b_2

$$
\begin{array}{cl}
\bar{u}(k, k+1)=u^{*}(k) & (a) \\
\begin{array}{cl}
i(k+1)=i^{*}(k) & (b)
\end{array} \\
\bar{i}(k, k+1)=\frac{i^{*}(k)+i(k)}{2} & (c) \\
\bar{e}(k, k+1)=e(k) & (d) \\
i(k)=\sum_{n=0}^{n=k-1}(i *(n)-i(n)) & (e) \\
u *(k)=\{R=0\}=L \cdot \frac{i^{*}(k)-i(k)}{T_{s}}+e(k)=\frac{L}{T_{s}} \cdot \underbrace{(i *(k)-i(k))}_{\text {Proportional }}+\underbrace{e(k)}_{\substack{\text { Feed } \\
\text { forward }}} \\
u *(k)=\{R=0\}=L \cdot \frac{i *(k)-i(k)}{T_{s}}+e(k)=\frac{L}{T_{s}} \cdot \underbrace{\Delta i}_{\text {Proportional }}+\underbrace{e(k)}_{\text {feed }}
\end{array}
$$

Solution Exam 20120521 3c

Constant 0 A

Rectifier dc-voltage
$220 * 1.414=311 \mathrm{~V}$
Voltage ref with const $0 \mathrm{~A}=100 \mathrm{~V}$
Duty cycle 100/311=0.32
On pulse $0.25 * 0.32=0.080 \mathrm{~ms}$
Current ripple $=(311-100) / 0.004 * 0.00008=4.24 \mathrm{~A}$

Load current 0 to 10 A

Rectifier dc-voltage $\quad 2 / 3.14 * 220 * 1.414=198 \mathrm{~V}$
Inductive voltage drop at current step $=98 \mathrm{~V}$ Time to reach 10 A $t=10^{*} .004 / 98=0.408 \mathrm{~ms}$
More than one sample time, set duty cycle $=1$

Constant 10 A

Rectifier dc-voltage $\quad 2 / 3.14 * 220 * 1.414=198 \mathrm{~V}$
Duty cycle with $10 \mathrm{~A}=100 / 198=0.505$
On pulse $0.25 * 0.505=0.126 \mathrm{~ms}$
Voltage ref at const $10 \mathrm{~A}=100 \mathrm{~V}$
Inductive voltage drop at current step $=98 \mathrm{~V}$
Current ripple $=(198-100) / .004 * .000126=3.09 \mathrm{~A}$

Modulation

Exam 20120521 4-4Q Converter \& 3 Phase

In a 4Q DC/DC converter using PWM bipolar voltage switching, the bridge load consist of a constant voltage E (e.g. the back emf of a dc-motor) and an inductor L_{a}, the inductor resistance can be neglected.
The switching frequency is f_{s}, and the DC link voltage is V_{d}.
a. Calculate the maximum peak-to-peak load current ripple, expressed in V_{d}, L_{a} and f_{s},
b. Draw the circuit of a current control block for a generic three phase RLE load.
The drawing shall include three phase inverter, reference and load current measurement.
It must be clear in which blocks the different frame transformations occur.

Solution Exam 2012-05-21 4a

Control ratio
On-pulse duration
Phase voltages

Voltage over motor
At current rise, switch 1 and 4 are turned -on
x
$\Delta t=x \cdot T_{s_{-} p e r}=\frac{x}{f_{s}}$
$V_{1 _ \text {avg }}=x \cdot V_{d}$
$V_{2 _ \text {avg }}=(1-x) \cdot V_{d}=V_{d}-x \cdot V_{d}$
$e=V_{1 _ \text {avg }}-V_{2 _ \text {avg }}=x \cdot V_{d}-V_{d}+x \cdot V_{d}=2 \cdot V_{d} \cdot x-V_{d}$

$$
V_{1}=V_{d}
$$

$$
V_{2}=0
$$

Voltage over inductor
Current ripple via equation
it's derivative
it's sec ond derivative
Phase voltages at max

Max current ripple

Fig 1

Solution Exam 20120521 4b

Exam 201205215

A permanently magnetized synchronous machine with $L_{s y}>L_{s x}$ is used as a traction motor in an electric vehicle.
a. Draw the torque expression in rotor coordinates, and describe your interpretation of the terms in the expression, and how they relate to the rotor geometry and magnetization.
b. Explain, in a qualitative sense, what is the best locus for the stator current vector to minimize the amount of current needed for torque production.
c. Explain the restrictions to the stator current loci that are imposed when the need for stator voltage is higher than the maximum available voltage.

Solution Exam 20120521 5a_1

$$
\begin{equation*}
T=\vec{\psi}_{s} x \vec{i}_{s}=\psi_{m} x i_{s y}+\left(L_{m x}-L_{m y}\right) \cdot i_{s x} \cdot i_{s y} \tag{11.5}
\end{equation*}
$$

ψ_{m} is the permanent magetization along the positive x-axes
$i_{s x}$ is the current along the permanent magetization
$i_{s y}$ is the current perpendicular to the permanent magetization, $\pi / 2$ in positive direction
$L_{m x}$ is the induct ance in the $x-$ direction
$L_{m y}$ is the induct ance in the x-direction
The moreiron and the smaller the airgap in the
x-or y-direction, the higher is the induct ance is that dircction
The permanent magetization material has no impact on the induct ance

Solution Exam 20120521 5a_2

See the torque equation, the first part of the torque is achieved when the permanent flux ψ_{m} is multiplied with the current $i_{s y}$.
The second part of the torque is the so called reluctance torque. E.g. At high speed the drive system is in field weakening, and the permanent magnetisation must be reduced, which is done with a negative $i_{s x}$.
If $L_{m x}<L_{m y}$ the difference $L_{m x}-L_{m y}$ is negative. When this difference is multiplied with the negative $i_{s x}$ and the positive $i_{s y}$ the result is a positive torque, called the reluctance torque.

Solution Exam 20120521 5b

$T=\vec{\psi}_{s} x \vec{i}_{s}=\psi_{m} x i_{s y}+\left(L_{m x}-L_{m y}\right) \cdot i_{s x} \cdot i_{s y}$
The first torque and the reluctance torque are added to the total torque, which can be achieved with different combinations of $i_{s x}$ and $i_{s y}$.
The combination which gives the lowest
absolute sumof $i_{s x}$ and $i_{s y}=\sqrt{i_{s x}{ }^{2}+i_{s y}{ }^{2}}$
is the optimal combination of $i_{s x}$ and $i_{s y}$ for a certain torque.

Solution Exam 20120521 5c

We want to increase the voltage, more than the available voltlage.
This can be achieved by weaken the field further, by increasing the negative current $i_{s x}$. However, this results in an increased total current, beyond the max current loci.

So, we have to reduce the $i_{s p}$ to fullfill the the maximum current loci.
See chapter 11.5

Exam 2014-05-30

Exam 20140530 1a

The four quadrant DC-DC converter

Draw a four quadrant DC DC converter with a three phase diode rectifier connected to the power grid. The Dc link capacitor and protection against too high inrush currents should be included in the drawing. The transistors are of IGBT-type.

Solution Exam 2014-05-30 1a

Exercise Exam 20140530 1b

The three-phase grid, to which the three phase diode rectifier is connected, has the line-to-line voltage $400 \mathrm{~V}_{\mathrm{rms}}$ at 50 Hz . Calculate the dc output voltage and the maximum dc link voltage from the rectifier.

Solution Exam 2014-05-30 1b

Maximum dc voltage

$$
U_{d c \max }=400 \cdot \sqrt{2} V=566 \mathrm{~V}
$$

Average dc voltage

$$
U_{d c_{-} a v e}=\frac{3}{\pi} \cdot 400 \cdot \sqrt{2} V=540 \mathrm{~V}
$$

Exam 20140530 1c

Calculate the rms-current and the average current through one rectifying diode (see figure 1). Calculate the rectifier diode losses. The diode threshold voltage is 1.1 V and the differential resistance is 2.0 mohm.

Solution Exam 2014-05-30 1c

Rectifier diode	
Threshold voltage	1.1 V
Differential resistance	2.0 mohm
$I_{\text {rms }}$	114.2 A
Average current	41.5 A

$I_{\text {dioderms }}=\sqrt{\frac{2 \cdot 0.00163}{0.02} \cdot\left(\frac{400}{\sqrt{2}}\right)^{2}}=114.2 \mathrm{~A}$
$I_{\text {diode ave }}=\left\{\right.$ Average of $\left.\sin u s=\frac{\int_{0}^{\pi} \sin (x) d x}{\pi}=\frac{(\cos (0)-\cos (\pi))}{\pi}=\frac{2}{\pi} \approx 0.637\right\}=\frac{2 \cdot 0.00163}{0.02} \cdot 0.637 \cdot 400=41.5 \mathrm{~A}$
Rectifier diode power loss

$$
P_{\text {rectifier diode }}=V_{\text {threshold }} \cdot I_{\text {ave }}+R_{\text {diff }} \cdot I_{\text {rms }}^{2}=1.1 \cdot 41.5+0.002 \cdot 114.2^{2}=71.7 \mathrm{~W}
$$

Exam 20140530 1d

Calculate the IGBT component losses of each IGBT in the four quadrant converter.
The duty cycle of the converter is 70%.
The switching frequency is 2.5 kHz .
The threshold voltage of the IGBT transistor equals 1.6 V and its differential resistance equals 1.0 mohm.
The turn-on loss of the IGBT transistor equals 65 mJ and its turn-off loss equals 82 mJ .
These turn-on and turn-off losses are nominal values at 900 V dclink voltage and 180 A turn-on and turn-off current.
The threshold voltage of the IGBT diode equals 1.0 V and
the differential resistance of this diode equals 10 mohm.
The IGBT diode turn-on can be neglected and its
turn-off losses equals 25 mJ , at 900 V dclink voltage and 180 A . (3 p.)

Solution Exam 2014-05-30 1d

Dc current to the dc link $\quad I_{d c}=\frac{6 \cdot 0.00163 \cdot 400}{0.02} \cdot 0.637=124.6 \mathrm{~A}$

Duty cycle	70\%
IGBT and diode on state current	124.6/0.7 $=178 \mathrm{~A}$
Conduction percentage of IGBT tran	$70+30 / 2=85 \%$
Conduction percentage of IGBT diode (when freewheeling) $30 / 2=15 \%$	
Switching frequency	$2,5 \mathrm{kHz}$
IGBT transistor	
Threshold voltage	1.6 V
Differential resistance	1.0 mohm
On state voltage at 178 A	1.78 V
Turn on energy at 900 V and 180 A	65 mJ
Turn off energy at 900 V and 180 A	82 mJ
IGBT diode	
Threshold voltage	1.0 V
Differential resistance	10. mohm
On state voltage at 178 A	
Turn on energy at 900 V and 180 A	0 mJ
Turn off energy at 900 V and 180 A	25 mJ
Power loss	
$\overline{P_{\text {trans_loss }}}=1.78 \cdot 178 \cdot 0.85+2500 \cdot \frac{(05+82) \cdot 10 \cdot 340 \cdot 1 / 8}{900 \cdot 180}=487 \mathrm{~W}$	
$P_{\text {diode_loss }}=2.78 \cdot 178 \cdot 0.15+2500 \cdot \frac{25 \cdot 10^{-3} \cdot 540 \cdot 178}{000.180}=111.3 \mathrm{~W}$	

Exam 20140530 1e

Which is the junction temperature of the IGBT transistor and of the IGBT diode, and which is the junction temperature of the rectifying diodes?
The thermal resistance of the heatsink equals 0.024 K/W?
The thermal resistance of the IGBT transistor equals $0.07 \mathrm{~K} / \mathrm{W}$?
The thermal resistance of the IGBT diode equals $0.16 \mathrm{~K} / \mathrm{W}$?
The thermal resistance of the rectifier diode equals $0.14 \mathrm{~K} / \mathrm{W}$?
The ambient temperature is $35^{\circ} \mathrm{C}$.
The rectifier diodes and the four quadrant converter IGBTs share the heatsink.

Solution Exam 2014-05-30 1e

Rectifier diode (6)	IGBT diode (2)	IGBT transistor (2)
Loss each 71.7W	Loss each 111.3 W	Loss each 487 W
Rth diode $0.14 \mathrm{C} / \mathrm{W}$	Rth diode $0.16 \mathrm{C} / \mathrm{W}$	Rth trans $\quad 0.07 \mathrm{C} / \mathrm{W}$
Temp diff $10.0{ }^{\circ} \mathrm{C}$	Temp diff $17.8^{\circ} \mathrm{C}$	Temp diff $34.1{ }^{\circ} \mathrm{C}$
Heatsink		
Contribution fron 6 rectifier diodes and from two IGBT.		
Ambient temperature		
Total loss to heatsink	$6 * 71.7+2 * 487+2 * 111.3=1627 \mathrm{~W}$	
Rth heatsink	$0.024 \mathrm{C} / \mathrm{W}$	
Temperature heatsink	$1627 * 0.024+35=74{ }^{\circ} \mathrm{C}$	
Junction temperature		
Rectifier diode	$74+10.0=84{ }^{\circ} \mathrm{C}$	
IGBT diode	$74+17.8=92{ }^{\circ} \mathrm{C}$	
IGBT transistor	$74+34.1=108^{\circ} \mathrm{C}$	

Exam 20140530 2a

Snubbers

Draw an IGBTequipped step down chopper
(buck converter) with an RCD snubber.
The dclink voltage on the supply side is 200 V and
the load voltage is 150 V .
Give a detailed description of how the RCD charge-discharge snubber should operate.
Explain why the snubbers are needed

Solution Exam 2014-05-30 2a

The buck converter with RCD snubber
At turn off of transistor T, the current i commtutates over to the capacitor C via diode D. The capacitor C charges until the potential of the transistor emitter reduces till the diode FD becomes forward biased and thereafter the load current $i_{\text {load }}$ flows through diode $F D$ and the current $i=0$.
A turn on of the transistor T, the capacitor C is discharged via the transistor T and resistor R. The diode FD becomes reverse biased and the current i commutates to the transistor T.

Exercise Exam 20140530 2b

Snubbers

Calculate the snubber capacitor for the commutation time 0.01 ms .
The load current is 12 A , assumed constant during the commutation.
Calculate the snubber resistor so the discharge time
(3 time constants)
of the snubber capacitor is less than the IGBT
on state time.
The switch frequency is 1.5 kHz

Solution Exam 2014-05-30 2b

At turn off of transistor T, the capacitor C charges until the potential of the transistor emitter reduces till the diode FD becomes forward biased and thereafter the load current commutates to the freewheeling diode.
$i=C \cdot \frac{d u}{d t} \Rightarrow C=\frac{i \cdot d t}{d u}=\frac{12 \cdot 10 \cdot 10^{-6}}{200}=0.6 \mu F$
A turn on of the transistor the current i commutates to the transistor T, and the capacitor C is discharged via the the transistor T and resistor R. As the load voltage is 150 V the duty cycle is 75%. The switching frequency is 1.5 kHz and the on state time is 0.5 ms , and thus the time constant $=0.17 \mathrm{~ms}$

$$
\tau=C \cdot R \Rightarrow R=\frac{\tau}{C}=\frac{170 \cdot 10^{-6}}{0.6 \cdot 10^{-6}}=283 \Omega
$$

Exam 20140530 2c

Snubbers

Draw the main circuit of a flyback converter. The circuit should include DM-filter (differential mode) ,CM (common mode) filter, rectifier, dc link capacitors, alternative connection for voltage doubling connection, switch transformer (one primary and one secondary winding is enough), switch transistor, flyback diode and a simple output filter, The circuit should also include snubbers.

Solution Exam 2014-05-30 2c

Exam 20140530 2d

Snubbers

Describe, in detail, the operation of the flyback converter snubbers you have used.
Describe in detail how the current is flowing in the snubber and the voltages n the snubber

Solution Exam 2014-05-30 2d

Fly-back converter withSnubber operation

For the description of the snubber operation the stray inductance L_{1} between the switch transistor and the supply/dclink, and the transformer leakage inductance, L_{2} on primary side and L_{3} on secondary side are added as discrete component in the circuit drawing above.

Exam 2014-05-30 3_1

The buck converter as battery charger
A battery charger is supplied from a symmetrical single phase system.
A dc voltage is created by a two pulse diode bridge and a 2-quadrant dc-converter is used for the charge current control.

Data: $\quad U_{1 r m s}=$ the phase-voltage rms value $=220 \mathrm{~V}, 50 \mathrm{~Hz}$.
The switching frequency is $f=4 \mathrm{kHz}$.
$L=4 \mathrm{mH}$ and $\mathrm{R}=0$ Ohms.
$U_{\text {batt }}=100 \mathrm{~V}$ and is approximated to be independent of the charge current.

Exam 2014-05-30 32

The buck converter as battery charger

a) What dc link voltage Ud will you get I) when the charging current is zero and II) when the charging current is non-zero with a perfectly smooth rectified current?
b) Start with the electrical equation for the load and derive a suitable current control algorithm, giving all approximations you use.
c) Draw a current step from 0 A till 10 A in the load current. The modulating wave (um), the voltage reference $\left(u^{*}\right)$, the output voltage (u) and current (ibatt) must be shown. Indicate the sampling frequency you use in relation to the switching frequency.

Solution Exam 2014-05-30 3a

Average dc voltage with average dc current

Max dc voltage with zero dc current

$$
U_{d c _a v e}=\frac{2}{\pi} \cdot 220 \cdot \sqrt{2} \quad V=198 \mathrm{~V}
$$

$$
U_{d c_{-} \max }=220 \cdot \sqrt{2} \mathrm{~V}=311 \mathrm{~V}
$$

Solution Exam 2014-05-30 3b_1

Current controller with fast computer

$$
\begin{aligned}
& u=R \cdot i+L \cdot \frac{d i}{d t}+e \\
& \frac{\int_{k \cdot T_{s}}^{(k+1) T_{s}} u \cdot d t}{\boldsymbol{T}_{s}}=\frac{R \cdot \int_{k \cdot T_{s}}^{(k+1) T_{s}} i \cdot d t+L \cdot \int_{k \cdot T_{s}}^{(k+1) T_{s}} \frac{d i}{d t} \cdot d t+\int_{k \cdot T_{s}}^{(k+1) T_{s}} e \cdot d t}{T_{s}} \\
& \bar{u}(k, k+1)=R \cdot \bar{i}(k, k+1)+L \cdot \frac{i(k+1)-i(k)}{T_{s}}+\bar{e}(k, k+1)
\end{aligned}
$$

Solution Exam 2014-05-30 3b_2

$$
\begin{align*}
& \bar{u}(k, k+1)=u *(k) \quad(a) \\
& i(k+1)=i *(k) \tag{b}\\
& \bar{i}(k, k+1)=\frac{i *(k)+i(k)}{2} \\
& \bar{e}(k, k+1)=e(k) \\
& i(k)=\sum^{n=k-1}(i *(n)-i(n))_{i} *(q)-i(k) \\
& u *(k)_{n \equiv 0}\{R=0\}=L \cdot \frac{i *(k)-i(k)}{T_{s}}+e(k)=\frac{L}{T_{s}} \cdot \underbrace{(i *(k)-i(k))}_{\text {Proportional }}+\underbrace{e(k)}_{\begin{array}{c}
\text { Feed } \\
\text { forward }
\end{array}} \\
& u^{*}(k)=\{R=0\}=L \cdot \frac{i^{*}(k)-i(k)}{T_{s}}+e(k)=\frac{L}{T_{s}} \cdot \underbrace{\Delta i}_{\text {Proportional }}+\underbrace{e(k)}_{\begin{array}{c}
\text { Feed } \\
\text { forward }
\end{array}}
\end{align*}
$$

Solution Exam 2014-05-30 3c

Constant 0 A

Rectifier dc-voltage
$220 * 1.414=311 \mathrm{~V}$
Voltage ref with const $0 \mathrm{~A}=100 \mathrm{~V}$
Duty cycle 100/311=0.32
On pulse $0.25 * 0.32=0.080 \mathrm{~ms}$
Current ripple $=(311-100) / 0.004 * 0.00008=4.24 \mathrm{~A}$

Load current 0 to 10 A

Rectifier dc-voltage $\quad 2 / 3.14 * 220 * 1.414=198 \mathrm{~V}$
Inductive voltage drop at current step $=98 \mathrm{~V}$ Time to reach 10 A $t=10^{*} .004 / 98=0.408 \mathrm{~ms}$
More than one sample time, set duty cycle $=1$

Constant 10 A

Rectifier dc-voltage $\quad 2 / 3.14 * 220 * 1.414=198 \mathrm{~V}$
Duty cycle with $10 \mathrm{~A}=100 / 198=0.505$
On pulse $0.25 * 0.505=0.126 \mathrm{~ms}$
Voltage ref at const $10 \mathrm{~A}=100 \mathrm{~V}$
Inductive voltage drop at current step $=98 \mathrm{~V}$
Current ripple $=(198-100) / .004^{*} .000126=3.09 \mathrm{~A}$

Modulation

Exercise Exam 2014-05-30 4a

Three phase system and 4QC

A symmetric three phase voltage:

$$
\left\{\begin{array}{l}
e_{a}=\hat{e} \cdot \cos (\omega \cdot t) \\
e_{b}=\hat{e} \cdot \cos \left(\omega \cdot t-\frac{2 \pi}{3}\right) \\
e_{c}=\hat{e} \cdot \cos \left(\omega \cdot t-\frac{4 \pi}{3}\right)
\end{array}\right.
$$

Show that these voltages form a rotating vector with constant length and constant speed in the complex (α, β) frame.

Solution Exam 2014-05-30 4a

$$
\begin{aligned}
& e_{a}=\hat{e} \cdot \cos (\omega \cdot t) \\
& \left\{e_{b}=\hat{e} \cdot \cos \left(\omega \cdot t-\frac{2 \pi}{3}\right)\right. \\
& e_{c}=\hat{e} \cdot \cos \left(\omega \cdot t-\frac{4 \pi}{3}\right) \\
& \vec{e}=\sqrt{\frac{2}{3}} \cdot\left(e_{a}+e_{b} \cdot e^{j \frac{2 \pi}{3}}+e_{c} \cdot e^{j \frac{4 \pi}{3}}\right)=\hat{e} \cdot \sqrt{\frac{2}{3}} \cdot\left[\cos (\omega t)+\cos \left(\omega t-\frac{2 \pi}{3}\right) \cdot\left(-\frac{1}{2}+j \cdot \frac{\sqrt{3}}{2}\right)+\cos \left(\omega t-\frac{4 \pi}{3}\right) \cdot\left(-\frac{1}{2}-j \cdot \frac{\sqrt{3}}{2}\right)\right]= \\
& =\hat{e} \cdot \sqrt{\frac{2}{3}} \cdot\left[\cos (\omega t)+\left\{\cos (\omega t) \cdot \cos \left(\frac{2 \pi}{3}\right)+\sin (\omega t) \cdot \sin \left(\frac{2 \pi}{3}\right)\right\} \cdot\left(-\frac{1}{2}+j \cdot \frac{\sqrt{3}}{2}\right)+\left\{\cos (\omega t) \cdot \cos \left(\frac{4 \pi}{3}\right)+\sin (\omega t) \cdot \sin \left(\frac{4 \pi}{3}\right)\right\} \cdot\left(-\frac{1}{2}-j \cdot \frac{\sqrt{3}}{2}\right)\right]= \\
& =\hat{e} \cdot \sqrt{\frac{2}{3}} \cdot\left[\cos (\omega t)+\left\{\cos (\omega t) \cdot\left(-\frac{1}{2}\right)+\sin (\omega t) \cdot\left(\frac{\sqrt{3}}{2}\right)\right\} \cdot\left(-\frac{1}{2}+j \cdot \frac{\sqrt{3}}{2}\right)+\left\{\cos (\omega t) \cdot\left(-\frac{1}{2}\right)+\sin (\omega t) \cdot\left(-\frac{\sqrt{3}}{2}\right)\right\} \cdot\left(-\frac{1}{2}-j \cdot \frac{\sqrt{3}}{2}\right)\right]= \\
& =\hat{e} \cdot \sqrt{\frac{2}{3}} \cdot\left[\cos (\omega t) \cdot\left(1+\frac{1}{4}-j \cdot \frac{\sqrt{3}}{4}+\frac{1}{4}+j \cdot \frac{\sqrt{3}}{4}\right)+\sin (\omega t) \cdot\left(-\frac{\sqrt{3}}{4}+j \cdot \frac{3}{4}+\frac{\sqrt{3}}{4}+j \cdot \frac{3}{4}\right)\right]=\hat{e} \cdot \sqrt{\frac{2}{3}} \cdot\left[\cos (\omega t) \cdot\left(\frac{3}{2}\right)+\sin (\omega t) \cdot\left(j \cdot \frac{3}{2}\right)\right]= \\
& =\hat{e} \cdot \sqrt{\frac{3}{2}} \cdot[\cos (\omega t)+j \cdot \sin (\omega t)]=\hat{e} \cdot \sqrt{\frac{3}{2}} \cdot e^{j \omega t} \\
& \text { Alternative solution } \\
& \vec{e}=\sqrt{\frac{2}{3}} \cdot\left(e_{a}+e_{b} \cdot e^{j \frac{2 \pi}{3}}+e_{c} \cdot e^{j \frac{4 \pi}{3}}\right)=\hat{e} \cdot \sqrt{\frac{2}{3}} \cdot\left[\cos (\omega t)+\cos \left(\omega t-\frac{2 \pi}{3}\right) \cdot e^{j \frac{2 \pi}{3}}+\cos \left(\omega t-\frac{4 \pi}{3}\right) \cdot e^{j \frac{4 \pi}{3}}\right]=\left\{\cos (x)=\frac{e^{j x}+e^{-j x}}{2}\right\}= \\
& =\hat{e} \cdot \sqrt{\frac{2}{3}} \cdot\left[\frac{e^{j \omega t}+e^{-j \omega t}}{2}+\frac{e^{j\left(\omega t-\frac{2 \pi}{3}\right)}+e^{-j\left(\omega t-\frac{2 \pi}{3}\right)}}{2} \cdot e^{j \frac{2 \pi}{3}}+\frac{e^{j\left(\omega t-\frac{4 \pi}{3}\right)}+e^{-j\left(\omega t-\frac{4 \pi}{3}\right)}}{2} \cdot e^{j \frac{4 \pi}{3}}\right]=\hat{e} \cdot \sqrt{\frac{2}{3}} \cdot\left[\frac{e^{j \omega t}+e^{-j \omega t}}{2}+\frac{e^{j \omega t-j \frac{2 \pi}{3}+j \frac{2 \pi}{3}}+e^{-j \omega t+j \frac{2 \pi}{3}+j \frac{2 \pi}{3}}}{2}+\frac{e^{j \omega t-j \frac{4 \pi}{3}+j \frac{4 \pi}{3}}+e^{-j \omega t+j \frac{4 \pi}{3}+j \frac{4 \pi}{3}}}{2}\right]= \\
& =\hat{e} \cdot \frac{1}{2} \cdot \sqrt{\frac{2}{3}} \cdot\left[e^{j \omega t}+e^{-j \omega t}+e^{j \omega t}+e^{-j \omega t} \cdot e^{j \frac{4 \pi}{3}}+e^{j \omega t}+e^{-j \omega t} \cdot e^{j \frac{8 \pi}{3}}\right]=\hat{e} \cdot \frac{1}{2} \cdot \sqrt{\frac{2}{3}} \cdot[3 \cdot e^{j \omega t}+e^{-j \omega t} \cdot \underbrace{\left(1-\frac{1}{2}+\frac{\sqrt{3}}{2}--\frac{1}{2}-\frac{\sqrt{3}}{2}\right)}_{=0}]=\hat{e} \cdot \sqrt{\frac{3}{2}} \cdot e^{j \omega t}
\end{aligned}
$$

Exam 2014-05-30 4b

In a 4QC dc-dc converter using PWM bipolar voltage switching, the the bridge load consist of a constant voltage E (e.g. the back emf of a dc-motor) and an inductor L_{a}, the inductor resistance can be neglected. The switching frequency is f_{s}, and the dc-link voltage is V_{d}

Calculate the maximum peak-to-peak load current ripple, .expressed in V_{d}, L_{a} and f_{s}.
(5 p.)

Solution Exam 2014-05-30 4b

Control ratio

On-pulse duration
Phase voltages

$$
V_{1-a v g}=x \cdot V_{d}
$$

$$
V_{2_{\text {_avg }}}=(1-x) \cdot V_{d}=V_{d}-x \cdot V_{d}
$$

Voltage over motor

$$
e=V_{1_{_} a v g}-V_{2_{_a v g}}=x \cdot V_{d}-V_{d}+x \cdot V_{d}=2 \cdot V_{d} \cdot x-V_{d}
$$

At current rise, switch 1 and 4 are turned -on

x

$$
\Delta t=x \cdot T_{s_{-} p e r}=\frac{x}{f_{s}}
$$

$$
V_{1}=V_{d}
$$

Fig 1

Voltage over inductor
Current ripple via equation
it's derivative

$$
V_{2}=0
$$

$$
V_{L}=V_{1}-e-V_{2}=V_{d}-e=V_{d}-2 \cdot V_{d} \cdot x+V_{d}=2 \cdot V_{d} \cdot(1-x)
$$

$$
V_{L}=L \frac{d i}{d t} \Rightarrow \Delta i=\frac{V_{L} \cdot \Delta t}{L} \Rightarrow \Delta i=\frac{2 \cdot V_{d} \cdot(1-x)}{L_{a}} \cdot \frac{x}{f_{s}}=\frac{2 \cdot V_{d}\left(x-x^{2}\right)}{f_{s} \cdot L_{a}}
$$

$$
\frac{\partial(\Delta i)}{\partial x}=\frac{2 \cdot V_{d}}{f_{s} \cdot L_{a}} \cdot(1-2 x) \Rightarrow \frac{\partial(\Delta i)}{\partial x}=0 \text { when } x=0.5
$$

it's sec ond derivative
Phase voltages at max

Max current ripple
$\frac{\partial^{2}(\Delta i)}{\partial x^{2}}=-\frac{4 \cdot V_{d}}{f_{s} \cdot L_{a}}<0 \Rightarrow \max$ at $x=0.5$
$V_{1_{\text {_avg }}}=0.5 \cdot V_{d}=0.5 \cdot V_{d}$
$V_{2_{_} a v g}=(1-0.5) \cdot V_{d}=0.5 \cdot V_{d}$
$e=V_{1 _ \text {avg }}-V_{2 _ \text {avg }}=0.5 \cdot\left(V_{d}-V_{d}\right)=0=\frac{0}{V_{d}}$
$\Delta i_{\text {max }}=\frac{2 \cdot V_{d} \cdot(1-0.5)}{L_{a}} \cdot \frac{0.5}{f_{s}}=\frac{V_{d}}{2 f_{s} L_{a}}$

Exam 2014-05-30 5

Permanent magnetized motor

A 50 kW motor drive is to be designed. The motor will run from a Power Electronic Converter with 500 V DC link. The bases speed must be 4000 rpm and the maximum speed 12000 rpm . The motor has 18 poles.
a) What is the highest output voltage
($U_{\text {phase-to-phase_rms }}$) that you would use?
b) What will be the phase current in this case?
c) What is the lowest sampling frequency that the controller must use to run this motor?
d) What is the lowest switching frequency that the modulation can use?
e) What will be the motor torque at base speed and maximum speed?

All your answers must be accompanied with your calculations and motivations!

Solution Exam 201405305

5a) Phase - to - phase voltage rms $U_{\text {rms_line_to_line }}=\frac{500}{\sqrt{2}}=354 \mathrm{~V}$
5b) $50000=\{$ assume $\cos \varphi=0.9\}=\sqrt{3} \cdot 354 \cdot I \cdot 0.9 \Rightarrow I=\frac{50000}{\sqrt{3} \cdot 354 \cdot 0.9}=90.7 \mathrm{~A}$
5c) Mech freq $=\frac{12000}{60}=200 \mathrm{~Hz}$
Elec. freq $=\{18$ poles, 9 polepairs $\}=9 \cdot 200 \mathrm{~Hz}=1800 \mathrm{~Hz}$
Sampling freq, see solution $5 d$.

5d) At least switching freq $=6 \cdot$ Elec.freq $=10800 \mathrm{~Hz}$
Two sample per switch. freq period \Rightarrow sampling freq $=21600 \mathrm{~Hz}$

5e) Torque ${ }_{4000 \mathrm{rpm}}=\{P=T \cdot \omega\}=\frac{P}{\omega}=\frac{50000}{2 \pi \cdot \frac{4000}{60}}=119 \mathrm{Nm}$
Torque $_{12000 \mathrm{pm}}=\frac{P}{\omega}=\frac{50000}{2 \pi \cdot \frac{12000}{60}}=39.8 \mathrm{Nm}$

Exam 2017-05-30

Exam 2017-05-30, 1a-c

The DC-DC buck converter

a) Draw a 1QC buck converter connected to the dc side of a three phase diode rectifier, which is connected to the power grid. The dclink capacitor and protection against too high inrush currents should be included in the drawing. The transistor is of IGBT-type.
b) The three-phase grid, to which the three phase diode rectifier is connected, has the line-to-line voltage $400 \mathrm{~V}_{\text {rms }}$ and the frequency 50 Hz . Calculate the dc output voltage and the maximum dc link voltage from the rectifier. (1p.)
c) Calculate the rms-current and the average current through one rectifying diode

Phase current
 (see figure 1). Calculate the rectifier diode losses. The diode threshold voltage
is $0,9 \mathrm{~V}$ and the differential resistance is 2.0 mohm.(2 p.)

Exam 2017-05-30, 1d

The DC-DC buck converter

d) Calculate the losses of the IGBT transistor and of the free wheeling diode in the buck converter. The buck converter phase inductor is 1 mH , and its resistance can be neglected.
Draw a time diagram with the buck converter phase current versus time during one period of the switching frequency.
The load on the low voltage side of the buck converter is a battery with the voltage $400 \mathrm{~V}_{\text {dc }}$.
The switching frequency is 2 kHz .
The threshold voltage of the IGBT transistor equals 1.1 V and its differential resistance equals 1.0 mohm. The turn-on loss of the IGBT transistor equals 60 mJ and its turn-off loss equals 80 mJ . These turn-on and turn-off losses are nominal values at 900 V dclink voltage and 180 A turn-on and turn-off current.
The threshold voltage of the free wheeling diode equals 1.3 V and the differential resistance of this diode equals 2 mohm . The free wheeling diode turn-on losses can be neglected and its turn-off losses equals 25 mJ , at 900 V dclink voltage and 180 A turn off current.

Exam 2017-05-30, 1 e

The DC-DC buck converter

e) Which is the junction temperature of the IGBT transistor and of the free wheeling diode, and which is the junction temperature of the rectifying diodes?
The thermal resistance of the heatsink equals 0.065 K/W?
The thermal resistance of the IGBT transistor equals 0.078 K/W?
The thermal resistance of the free wheeling diode equals $0.19 \mathrm{~K} / \mathrm{W}$?
The thermal resistance of the rectifier diode equals $0.21 \mathrm{~K} / \mathrm{W}$?
The ambient temperature is $35^{\circ} \mathrm{C}$.
The rectifier diodes and the buck converter transistor and diode share the heatsink.

Solution Exam 2017-05-30 1a

Solution Exam 2017-05-30 1b

Maximum dc voltage

$$
U_{d c \max }=400 \cdot \sqrt{2} V=566 \mathrm{~V}
$$

Average dc voltage

$$
U_{d c_{-} a v e}=\frac{3}{\pi} \cdot 400 \cdot \sqrt{2} V=540 \mathrm{~V}
$$

Solution Exam 2017-05-30 1c

Data

Rectifier diode Threshold voltage 0.9 V
Differential resistance
2.0 mohm
$I_{\text {diode rms_onehalf sinus }}=\left(\frac{400}{\sqrt{2}}\right) A=282.8 \mathrm{~A}$
$I_{\text {diode rms }}=\sqrt{\frac{2 \cdot 0.00163}{0.02} \cdot 282.8^{2}}=114.2 \mathrm{~A}$
$I_{\text {diode ave }}=\left\{\right.$ Averageof $\left.\sin u s=\frac{\int_{0}^{\pi} \sin (x) d x}{\pi}=\frac{(\cos (0)-\cos (\pi))}{\pi}=\frac{2}{\pi} \approx 0.637\right\}=\frac{2 \cdot 0.00163}{0.02} \cdot 0.637 \cdot 400=41.5 \mathrm{~A}$
Rectifier diode power loss

$$
P_{\text {rectifier diode }}=V_{\text {threshold }} \cdot I_{\text {ave }}+R_{\text {diff }} \cdot I_{r m s}^{2}=0.9 \cdot 41.5+0.002 \cdot 114.2^{2}=63.4 \mathrm{~W}
$$

Solution Exam 2017-05-30 1d_1

$$
I_{d c}=\frac{6 \cdot 0.00163 \cdot 400}{0.02} \cdot 0.637=124.6 A
$$

The current to the dc link

Duty cycle
Average transistor current
Switching frequency period time
Duration of transistor on
Current ripple, equ $U=L^{*} d i / d t, \Delta i=U^{*} \Delta t / L=$ Low voltage side max phase current Low voltage side max phase current

$$
\begin{aligned}
& 400 / 540=74 \% \\
& 124.6 / 0.74=168.2 \mathrm{~A} \\
& 1 / 2000=0.0005 \mathrm{~s} \\
& 0.74 / 0.0005=0.00037 \mathrm{~s} \\
& \Delta \mathrm{i}=(540-400)^{*} 0.00037 / 0.001=51.8 \mathrm{~A} \\
& \mathrm{Imax}=168.2+51.8 / 2=194.1 \mathrm{~A} \\
& \mathrm{Imin}=168.2-51.8 / 2=142.3 \mathrm{~A}
\end{aligned}
$$

$i(t)$ _diode

Solution Exam 2017-05-30 1d_2

Find a general expression for RMS from a time domain trapezoid shaped current
Equation for the straight line $i(t)=\frac{(B-A)}{T} \cdot t+A$

$$
\begin{aligned}
& I_{r m s}=\sqrt{\frac{\int_{0}^{T}\left(\frac{(B-A)}{T} \cdot t+A\right)^{2} d t}{T}}=\sqrt{\left(\frac{\left(B^{2}+A^{2}-2 A B\right) \cdot T^{3}}{3 T^{2} \cdot T}+\frac{A^{2} T}{T}+2 \cdot A \cdot \frac{(B-A) \cdot t^{2}}{2 T \cdot T}\right)}= \\
& =\sqrt{\left(\frac{B^{2}+A^{2}-2 A B+3 A^{2}+3 A B-3 A^{2}}{3}\right)}=\sqrt{\left(\frac{A^{2}+B^{2}+A B}{3}\right)} \\
& \left\{\begin{array}{l}
I_{\min }=142.3 A \\
I_{\max }=194.1 A
\end{array}\right.
\end{aligned}
$$

threshold volrage[V] Rdiff[mohm] Turn-on[mJ] Turn off[mJ] Switch losses at voltage[V] and at current[A]

Transistor	1.5	1.0	60	80	900
Diode	1.0	2.0	0	25	900

$\left\{\begin{array}{l}P_{\text {trans_loss }}=1.5 \cdot 124.5+0,001 \cdot 145.3^{2}+2000 \cdot \frac{(0.060 \cdot 142.3+0.080 \cdot 194.1) \cdot 540}{900 \cdot 180}=368 W \\ P_{\text {diode_loss }}=1.0 \cdot 43.7+0,002 \cdot 86.1^{2}+2000 \cdot \frac{0.025 \cdot 142.3 \cdot 540}{900 \cdot 180}=82.2 W\end{array}\right.$

Solution Exam 2017-05-30 1e

Rectifier diode (6)		IGBT diode
Loss each 63.4 W	Loss each 82.2 W	LGBT transistor
Rth diode $0.25 \mathrm{C} / \mathrm{W}$	Rth diode $0.4 \mathrm{C} / \mathrm{W}$	Rth trans 368 W
Temp diff $15.8^{\circ} \mathrm{C}$	$\underline{\text { Temp diff } 32.9^{\circ} \mathrm{C}}$	$\underline{\mathrm{Temp} \text { diff } 73.6^{\circ} \mathrm{C}}$

```
Heatsink
Contribution fron 6 rectifier diodes and from one IGBT and one diode.
Ambient temperature
35 '}\textrm{C
Total loss to heatsink
    6*63.4+368+82.2=831 W
Rth heatsink
Temperature heatsink
    0.07 C/W
    831*0.07+35=93 '}\textrm{C
Junction temperature
Rectifier diode
    93+15.8 = 109 }\mp@subsup{}{}{\circ}\textrm{C
IGBT diode
    93+32.9 = 126 '}\mp@subsup{}{}{\circ}\textrm{C
IGBT transistor
93+73.6 = 167 '}\mp@subsup{}{}{\circ}\textrm{C
```


Exam 2017-05-30, 2

Snubbers and semiconductor

a) Draw an IGBTequipped step down chopper (buck converter) with an RCD snubber. Give a detailed description of how the RCD charge-discharge snubber operates at turn on and at turn-off. Explain why the snubbers are needed
b) The DC link voltage on the supply side is 250 V and the load voltage is 200 V . Calculate the snubber capacitor for the commutation time 0.015 ms . The load current is 17 A , assumed constant during the commutation. Calculate the snubber resistor so the discharge time (3 time constants) of the snubber capacitor is less than the IGBT on state time.
The switch frequency is 2 kHz
c) Draw a figure with the diffusion layers in a (n-channel) MOSFET
d) Where in the (n -channel) MOSFET diffusion layers structure can an unwanted NPN-transistor be found, and where can the anti-parallel diode be found? What in the MOSFET layout reduces the risk that this unwanted transistor is turned on?
e) Which layer is always present in a power semiconductor? How is it doped?

Solution Exam 2017-05-30, 2a

The buck converter with RCD snubber
At turn off of transistor T , the current i commtutates over to the capacitor C via diode D . The capacitor C charges until the potential of the transistor emitter reduces till the diode FD becomes forward biased and thereafter the load current $\mathrm{i}_{\text {load }}$ flows through diode FD and the current $\mathrm{i}=0$. A turn on of the transistor T, the capacitor C is discharged via the transistor T and resistor R. The diode FD becomes reverse biased and the current i commutates to the transistor T .

Exam 2017-05-30 2b, 1

The DC link voltage on the supply side is 250 V and the load voltage is 200 V .
Calculate the snubber capacitor for the commutation time 0.015 ms .
The load current is 17 A , assumed constant during the commutation.
Calculate the snubber resistor so the discharge time (3 time constants) of the snubber capacitor is less than the IGBT on state time.

The switching frequency is 2 kHz

Solution Exam 2017-05-30 2b, 2

At turn off of transistor T, the capacitor C charges until the potential of the transistor emitter reduces till the diode FD becomes forward biased and thereafter the load current commutates to the freewheeling diode.
$i=C \cdot \frac{d u}{d t} \Rightarrow C=\frac{i \cdot d t}{d u}=\frac{17 \cdot 15 \cdot 10^{-6}}{250}=1.0 \mu F$
A turn on of the transistor the current i commutates to the transistor T , and the capacitor C is discharged via the the transistor T and resistor R . As the load voltage is 200 V the duty cycle is 80%. The switching frequency is 2 kHz and the on state time is $0.5^{*} 0.8=0.4 \mathrm{~ms}$, and thus the time constant $=0.12 \mathrm{~ms}$

$$
\tau=C \cdot R \Rightarrow R=\frac{\tau}{C}=\frac{120 \cdot 10^{-6}}{1 \cdot 10^{-6}}=120 \Omega
$$

Solution Exam 20170530 2c

The MOSFET

Solution Exam 20170530 2d

Solution Exam 20170530 2e

Depletion region $n-$

- The depletion region, is an insulating region within a conductive, doped semiconductor material where the mobile charge carriers have been diffused away, or have been forced away by an electric field.
- The only elements left in the depletion region are ionized donor or acceptor impurities.
- The depletion region is so named because it is formed from a conducting region by removal of all free charge carriers, leaving none to carry a current.

Exam 2017-05-30 3a

Three phase system

a) A symmetric three phase voltage:

$$
\left\{\begin{array}{l}
e_{a}=\hat{e} \cdot \cos (\omega \cdot t) \\
e_{b}=\hat{e} \cdot \cos \left(\omega \cdot t-\frac{2 \pi}{3}\right) \\
e_{c}=\hat{e} \cdot \cos \left(\omega \cdot t-\frac{4 \pi}{3}\right)
\end{array}\right.
$$

b) Show that these voltages form a rotating vector with constant length and constant speed in the complex (α, β) frame.
c) Draw the circuit of a current control block for a generic three phase RLE load. The drawing shall include three phase converter, reference and load current measurement. It must be clear in which blocks the different frame transformations occur.

Solution Exam 2017-05-30 3a

$$
\begin{aligned}
& e_{a}=\hat{e} \cdot \cos (\omega \cdot t) \\
& \left\{e_{b}=\hat{e} \cdot \cos \left(\omega \cdot t-\frac{2 \pi}{3}\right)\right. \\
& e_{c}=\hat{e} \cdot \cos \left(\omega \cdot t-\frac{4 \pi}{3}\right) \\
& \vec{e}=\sqrt{\frac{2}{3}} \cdot\left(e_{a}+e_{b} \cdot e^{j \frac{2 \pi}{3}}+e_{c} \cdot e^{j \frac{4 \pi}{3}}\right)=\hat{e} \cdot \sqrt{\frac{2}{3}} \cdot\left[\cos (\omega t)+\cos \left(\omega t-\frac{2 \pi}{3}\right) \cdot\left(-\frac{1}{2}+j \cdot \frac{\sqrt{3}}{2}\right)+\cos \left(\omega t-\frac{4 \pi}{3}\right) \cdot\left(-\frac{1}{2}-j \cdot \frac{\sqrt{3}}{2}\right)\right]= \\
& =\hat{e} \cdot \sqrt{\frac{2}{3}} \cdot\left[\cos (\omega t)+\left\{\cos (\omega t) \cdot \cos \left(\frac{2 \pi}{3}\right)+\sin (\omega t) \cdot \sin \left(\frac{2 \pi}{3}\right)\right\} \cdot\left(-\frac{1}{2}+j \cdot \frac{\sqrt{3}}{2}\right)+\left\{\cos (\omega t) \cdot \cos \left(\frac{4 \pi}{3}\right)+\sin (\omega t) \cdot \sin \left(\frac{4 \pi}{3}\right)\right\} \cdot\left(-\frac{1}{2}-j \cdot \frac{\sqrt{3}}{2}\right)\right]= \\
& =\hat{e} \cdot \sqrt{\frac{2}{3}} \cdot\left[\cos (\omega t)+\left\{\cos (\omega t) \cdot\left(-\frac{1}{2}\right)+\sin (\omega t) \cdot\left(\frac{\sqrt{3}}{2}\right)\right\} \cdot\left(-\frac{1}{2}+j \cdot \frac{\sqrt{3}}{2}\right)+\left\{\cos (\omega t) \cdot\left(-\frac{1}{2}\right)+\sin (\omega t) \cdot\left(-\frac{\sqrt{3}}{2}\right)\right\} \cdot\left(-\frac{1}{2}-j \cdot \frac{\sqrt{3}}{2}\right)\right]= \\
& =\hat{e} \cdot \sqrt{\frac{2}{3}} \cdot\left[\cos (\omega t) \cdot\left(1+\frac{1}{4}-j \cdot \frac{\sqrt{3}}{4}+\frac{1}{4}+j \cdot \frac{\sqrt{3}}{4}\right)+\sin (\omega t) \cdot\left(-\frac{\sqrt{3}}{4}+j \cdot \frac{3}{4}+\frac{\sqrt{3}}{4}+j \cdot \frac{3}{4}\right)\right]=\hat{e} \cdot \sqrt{\frac{2}{3}} \cdot\left[\cos (\omega t) \cdot\left(\frac{3}{2}\right)+\sin (\omega t) \cdot\left(j \cdot \frac{3}{2}\right)\right]= \\
& =\hat{e} \cdot \sqrt{\frac{3}{2}} \cdot[\cos (\omega t)+j \cdot \sin (\omega t)]=\hat{e} \cdot \sqrt{\frac{3}{2}} \cdot e^{j \omega t} \\
& \text { Alternative solution } \\
& \vec{e}=\sqrt{\frac{2}{3}} \cdot\left(e_{a}+e_{b} \cdot e^{j \frac{2 \pi}{3}}+e_{c} \cdot e^{j \frac{4 \pi}{3}}\right)=\hat{e} \cdot \sqrt{\frac{2}{3}} \cdot\left[\cos (\omega t)+\cos \left(\omega t-\frac{2 \pi}{3}\right) \cdot e^{j \frac{2 \pi}{3}}+\cos \left(\omega t-\frac{4 \pi}{3}\right) \cdot e^{j \frac{4 \pi}{3}}\right]=\left\{\cos (x)=\frac{e^{j x}+e^{-j x}}{2}\right\}= \\
& =\hat{e} \cdot \sqrt{\frac{2}{3}} \cdot\left[\frac{e^{j \omega t}+e^{-j \omega t}}{2}+\frac{e^{j\left(\omega t-\frac{2 \pi}{3}\right)}+e^{-j\left(\omega t-\frac{2 \pi}{3}\right)}}{2} \cdot e^{j \frac{2 \pi}{3}}+\frac{e^{j\left(\omega t-\frac{4 \pi}{3}\right)}+e^{-j\left(\omega t-\frac{4 \pi}{3}\right)}}{2} \cdot e^{j \frac{4 \pi}{3}}\right]=\hat{e} \cdot \sqrt{\frac{2}{3}} \cdot\left[\frac{e^{j \omega t}+e^{-j \omega t}}{2}+\frac{e^{j \omega t-j \frac{2 \pi}{3}+j \frac{2 \pi}{3}}+e^{-j \omega t+j \frac{2 \pi}{3}+j \frac{2 \pi}{3}}}{2}+\frac{e^{j \omega t-j \frac{4 \pi}{3}+j \frac{4 \pi}{3}}+e^{-j \omega t+j \frac{4 \pi}{3}+j \frac{4 \pi}{3}}}{2}\right]= \\
& =\hat{e} \cdot \frac{1}{2} \cdot \sqrt{\frac{2}{3}} \cdot\left[e^{j \omega t}+e^{-j \omega t}+e^{j \omega t}+e^{-j \omega t} \cdot e^{j \frac{4 \pi}{3}}+e^{j \omega t}+e^{-j \omega t} \cdot e^{j \frac{8 \pi}{3}}\right]=\hat{e} \cdot \frac{1}{2} \cdot \sqrt{\frac{2}{3}} \cdot[3 \cdot e^{j \omega t}+e^{-j \omega t} \cdot \underbrace{\left(1-\frac{1}{2}+\frac{\sqrt{3}}{2}--\frac{1}{2}-\frac{\sqrt{3}}{2}\right)}_{=0}]=\hat{e} \cdot \sqrt{\frac{3}{2}} \cdot e^{j \omega t}
\end{aligned}
$$

Solution Exam 20170530 3b

Exam 2017-05-30 4

The buck converter as battery charger

a) A DC/DC Converter has a DC link voltage of 100 V and can be either a 2 Q or a 4Q converter supplying a load consisting of a 625 mH inductance in series with a 20 V back emf. The converter is carrier wave modulated with a 4 kHz modulation frequency and equipped with a current controller. A current step from 0 to 12 A is made and then back to 0 A again after 4 modulation periods.
b) Calculate the voltage reference for a few modulation periods before the positive step, for the positive step, for the time in between the steps, for the negative step and for a few modulation periods after the negative step in the 2Q case.
c) Draw the current to the load in the 2Q case, from two modulation periods before the positive current step to two modulation periods after the negative step.
d) Calculate the voltage reference for a few modulation periods before the positive step, for the positive step, for the time in between the steps, for the negative step and for a few modulation periods after the negative step in the 4Q case.
e) Draw the current to the load in the 4Q case, from two modulation periods before the positive current step to two modulation periods after the negative step.
f) In both b) and d) the current ripple must be correctly calculated.

Solution Exam 2017-05-30 4a

$$
\begin{array}{ll}
\text { Data: } & f_{s w}=4 \mathrm{kHz} . \\
& L=0.625 \mathrm{Mh} \\
& R=0 \\
& U_{d}=100 \mathrm{~V} \\
& e=20 \mathrm{~V}
\end{array}
$$

Equation $U=L \cdot \frac{d i}{d t}+e$

Before the pos. current step $\mathrm{i}=0 \mathrm{~A}$, constant, $\mathrm{di} / \mathrm{dt}=0$
At the positive current step, use max voltage
At the constant current $12 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=0$, and $\mathrm{R}=0$
At the negative current step, use zero voltage
After the neg. Current step $\mathrm{i}=0 \mathrm{~A}$, constant, di/dt=0

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{ref}}=\mathrm{e}=20 \mathrm{~V} \\
& \mathrm{U}_{\text {ref }}=\mathrm{U}_{\mathrm{d}}=100 \mathrm{~V} \\
& \mathrm{U}_{\text {ref }}=\mathrm{e}=20 \mathrm{~V} \\
& \mathrm{U}_{\text {ref }}=0 \mathrm{~V} \\
& \mathrm{U}_{\text {ref }}=\mathrm{e}=20 \mathrm{~V}
\end{aligned}
$$

Solution Exam 2017-05-30 4b

Duty cycle $D=\frac{20}{100}=0.2$
$U=L \cdot \frac{d i}{d t}+e \approx L \cdot \frac{\Delta i}{\Delta t}+e \Rightarrow \Delta i=\frac{(U-e)}{L} \cdot \Delta t$
See figure, time for current rise $=$ Duty cycle times the switching frequency period
Current ripple $\Delta i=\frac{(U-e)}{L} \cdot \Delta t=\left\{\Delta t=\frac{1}{f_{s w}} \cdot D\right\}=\frac{(100-20)}{0.625 \cdot 10^{-3}} \cdot \frac{D}{4 \cdot 10^{3}}=6.4 \mathrm{~A}$

Solution Exam 2017-05-30 4c

$$
\begin{array}{ll}
\text { Data: } & f_{s w}=4 \mathrm{kHz} . \\
& L=0.625 \mathrm{Mh} \\
& R=0 \\
& U_{d c}=100 \mathrm{~V} \\
& e=20 \mathrm{~V}
\end{array}
$$

Equation $\quad U=L \cdot \frac{d i}{d t}+e$

Before the pos. current step $\mathrm{i}=0 \mathrm{~A}$, constant, $\mathrm{di} / \mathrm{dt}=0$ At the positive current step, use max voltage
At the constant current $12 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=0$, and $\mathrm{R}=0$
At the negative current step, use minimum voltage
After the neg. current step $\mathrm{i}=0 \mathrm{~A}$, constant, di/dt=0
$\mathrm{U}_{\text {ref }}=\mathrm{e}=20 \mathrm{~V}$
$\mathrm{U}_{\mathrm{ref}}=\mathrm{U}_{\mathrm{dc}}=100 \mathrm{~V}$
$\mathrm{U}_{\text {ref }}=\mathrm{e}=20 \mathrm{~V}$
$\mathrm{U}_{\text {ref }}=-100 \mathrm{~V}$
$U_{\text {ref }}=e=20 \mathrm{~V}$

Solution Exam 2017-05-30 4d

Duty cycle $D=\frac{20}{100}=0.2$
$U=L \cdot \frac{d i}{d t}+e \approx L \cdot \frac{\Delta i}{\Delta t}+e \Rightarrow \Delta i=\frac{(U-e)}{L} \cdot \Delta t$
See figure. Time for current rise $=$ Duty cycle $*$ half the switching frequency period
Current ripple $\Delta i=\frac{(U-e)}{L} \cdot \Delta t=\left\{\Delta t=\frac{0.5 \cdot D}{f_{s w}}\right\}=\frac{(100-20)}{0.625 \cdot 10^{-3}} \cdot \frac{0.1}{4 \cdot 10^{3}}=3.2 \mathrm{~A}$

Exam 2017-05-30 5_1

Permanently magnetized synchronous machine

A 120 kW motor drive is to be designed. The motor will run from a Power Electronic Converter with 800 V DC link. The bases speed must be 5000 rpm and the maximum speed 12000 rpm .
a) What is the rated torque of the machine
(2p)
b) What is the RMS Phase-to-phase voltage at rated power?
c) What is the rated phase current of the machine?

All your answers must be accompanied with your calculations and motivations!

Exam 2017-05-30 5_2

Permanent magnetized motor

d) The electric frequency of the machine at base speed is 250 Hz .
What is the lowest sampling frequency that you would choose to control the machine?
e) What is a suitable switching frequency for the converter?

All your answers must be accompanied with your calculations and motivations!

Solution 201705305

5a) Torque of the machine $T=\frac{P}{\omega}=\frac{120000}{\frac{5000}{60} \cdot 2 \pi}=229 \mathrm{Nm}$
5b) Phase-to - phasevoltage rms $U_{L L_{-} r m s}=\frac{800}{\sqrt{2}}=566 \mathrm{~V}$
5c) $120000=\{$ assume $\cos \varphi=0.95\}=\sqrt{3} \cdot 566 \cdot I \cdot 0.95 \Rightarrow I=\frac{120000}{\sqrt{3} \cdot 566 \cdot 0.95}=129 \mathrm{~A}$
5d) Thebase speed is where the top power is achieved.At this speed the electric frequency of the motor equals 250 Hz , and itsthe mechanical frequency $=\frac{5000}{60}=83.33 \mathrm{~Hz}$

The relation between the electric and the mechanical frequency $=\frac{250}{83.33} a=3$
gives the result that the motor has 6 - poles.
At the top motor speed 12000 rpm the electric frequency $=3 \cdot \frac{12000}{60}=600 \mathrm{~Hz}$.
Switching freq $=\{$ at least one switching period per hexagon side $\}=6 \cdot 600=3600 \mathrm{~Hz}$ Sampling freq $=\{2$ samples per switching frequency period $\}=2 \cdot 3600 \mathrm{~Hz}=7200 \mathrm{~Hz}$
5e) See 5d.Switching freq $=3600 \mathrm{~Hz}$

Exam 2017-05-30

Formulas:

$\vec{s}=K \cdot\left|s_{a}+s_{b} \cdot e^{j \cdot \frac{2 \cdot \pi}{3}}+s_{c} \cdot e^{j \cdot \frac{4 \cdot \pi}{3}}\right|=K \cdot\left[\frac{3}{2} \cdot s_{a}+j \cdot \frac{\sqrt{3}}{2}\left(s_{b}-s_{c}\right)\right]=s_{\alpha}+j \cdot s_{\beta}$
Power invariant
Three phase -> two phase conversion
$\mathrm{s}_{\alpha}=\sqrt{\frac{3}{2}} \cdot \mathrm{~s}_{\mathrm{a}}$
$\mathrm{s}_{\beta}=\frac{1}{\sqrt{2}} \cdot\left(\mathrm{~s}_{\mathrm{b}}-\mathrm{s}_{\mathrm{c}}\right)$

Power invariant

Two phase \rightarrow three phase conversion

$$
\begin{aligned}
& s_{a}=\sqrt{\frac{2}{3}} \cdot s_{\alpha} \\
& s_{b}=-\frac{1}{\sqrt{6}} s_{\alpha}+\frac{1}{\sqrt{2}} \cdot s_{\beta} \\
& s_{c}=-\frac{1}{\sqrt{6}} s_{\alpha}-\frac{1}{\sqrt{2}} \cdot s_{\beta}
\end{aligned}
$$

