
7
Using a Linear Damper

… in which root locus plots are used to explore the impact of a single
damper with two different feedback signals and locations of transfer
function zeroes in power systems are predicted using the spring-mass inter-
area mode model.

The mode controllability and mode observability measures given in
Chapters 3 and 4 indicate where to place the actuator and where to measure
the selected signal. In this chapter, the loop is closed and the gain of the
controller is chosen for maximum damping of selected modes.

The power system with one damper installed can be described as a single-
input single-output (SISO) system with a feedback controller. The
controller output is active power injection at the damper location, and the
controller input is either local bus frequency or rotor frequency of the
closest machine. With these measurement signals, the controller will be a
simple static gain. If instead angles are measured, the controller will
include a lead filter with approximately 90° phase advancement at
frequencies below a few Hertz. Whenever possible the analysis will
consider frequencies as measured directly.

Mode controllability and mode observability supply information that is
valuable for suggesting a suitable controller structure, but it is valid only at
zero gain. To explore the behaviour of a SISO system for gains greater than
zero the root locus method is adequate and is used in the instructive PSS
article [Larsen and Swann 1981]. The root locus is the path of the system
eigenvalues as the gain is varied from zero to infinity. Considering
damping of a certain mode, optimum gain is selected as the one that
produces maximum damping. The relationship to the previous measures is
close since the eigenvalue sensitivity supplied by the mode controllability
and mode observability provides the gradient at the starting point of the
root locus.

Often a root locus does not need to be traced out in detail to be sufficiently
informative. An approximate sketch can be produced by applying a number
of rules. According to one of these rules, eigenvalues move towards
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transfer function zeroes. If a zero is located at infinity, the eigenvalue will
approach along an asymptote, that can be determined by another rule.

The attraction of eigenvalues to zeroes plays a critical role by reducing the
control authority. Unfavourably located zeroes thus limit the maximum
damping. Consequently, understanding how zeroes arise and what governs
their locations is very valuable. This is studied in Section 7.1 by computing
the zeroes of the spring-mass inter-area mode equivalent subjected to
feedback from the different signals. Section 7.2 treats Multi-Modal
Decomposition, which is a model structure that improves the understanding
of transfer function zeroes that arise when trying to damp electro-
mechanical modes of power systems. In Section 7.3 and 7.4 a damper is
introduced in the three and twenty-three machine systems respectively.
Root locus plots are shown for the two different feedback signals and
optimum gains are selected. Section 7.5 concludes the chapter.

7.1 System Zeroes of the Spring-Mass Model

In accordance with the root locus rule mentioned above the zeroes can be
determined as the system eigenvalues for the case with infinite feedback
gain. This can be shown by assuming an open loop system with input u and
output y corresponding to Laplace transforms U(s) and Y(s). The transfer
function of the system is,

Y s( )
U s( )

= Z s( )
P s( )

Introducing the proportional control law,

U(s) = K Uref (s) − Y (s)[ ]
yields a transfer function from reference Uref(s) to output Y(s) as,

Y s( )
Uref s( )

= KZ s( )
P s( ) + KZ s( )

where an infinite gain K turns the roots of Z(s) into the eigenvalues of the
system. If np and nz are the degrees of the polynomials P(s) and Z(s), np is
assumed to be greater than nz and np-nz zeroes are infinite.
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Zeroes for Feedback from Local Bus Frequency

Feedback from local bus frequency to active power is introduced in the
spring-mass inter-area mode equivalent of Fig. 2.10 by letting the force F3
depend on the time derivative of x3 as,

F3 = d3ẋ3

This only requires d3 to be inserted as an element of the diagonal matrix in
(2.29),

diag
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1
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(7.1)

Note that the model order is increased by one as x3 is turned from an
algebraic variable into a dynamic state. The diagonal matrix can now be
inverted and premultiplied from the left.

An infinite gain d3 causes the time derivative of x3 to be zero. As x3 is the
output of an integrator with zero input it yields an eigenvalue at the origin
and thus the first zero,

z1 = 0

As x3 cannot vary, it will not affect system dynamics and can therefore be
treated as a (constant) input. The remaining zeroes are thus obtained as the
eigenvalues of the system,
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This gives

z2 = z3
* = j

k1

M1
;   z4 = z5

* = j
k2

M2
(7.2)

where * denotes complex conjugate. For an infinite gain, the system can be
viewed as two independent spring-mass systems, with separate resonance
frequencies. The four last zeroes are thus the mechanical resonances of the
system as the position x3 is fixed. This agrees perfectly with the result of
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[Miu 1991], that "complex conjugate zeros are the resonant frequencies of
a substructure constrained by the sensor and actuator". Note that whereas
the original system had one oscillatory mode, the system with infinite
feedback has two, as the rigid body mode is made oscillatory. The zero z1
at the origin reflects the fact that x3 can take any value.

From (7.2) the location of the zeroes relative to the eigenvalues of the
uncontrolled system is not evident, yet of great interest. Let

k1

M1
= γ k2

M2
(7.3)

where γ is a real number. The eigenvalues in (2.30) of the inter-area mode
for the uncontrolled system can now be described as,

λ1 = λ2
* = j

k1

M1

M1 + M2

γM1 + M2
= j

k2

M2
γ M1 + M2

γM1 + M2

It is now clear that a γ greater than one yields,

z4 < λ1 < z2

z5 < λ2 < z3

which is illustrated in the left graph of Fig. 7.1. A γ less than one gives the
opposite relations, but looks the same in the complex plane. If x3 is chosen
so that γ is exactly one, the location of the zeroes coincide with those of the
eigenvalues as indicated in the right graph of Fig. 7.1. This pole-zero
cancellation, also demonstrated in [Jones 1996], means that for γ equal to
one the suggested feedback controller would not move the eigenvalues at
all.
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Fig. 7.1 Locations of oscillatory eigenvalues (x) and zeroes (o) for γ  greater than
one (left) and equal to one (right).
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This agrees well with Chapter 3 and 4, which show that for the considered
input and output signals, both controllability and observability of the inter-
area mode are lost when γ is one. In the power system case, γ relates the
mass-scaled electrical distances from the actuator to the machines. In order
for the damping controller to be effective, it should be placed so that γ is
far from one, as this moves the zeroes away from λ1 and λ2. Note that loss
of mode observability and mode controllability both on their own will
cause zeroes to coincide with the eigenvalues of the mode.

Although the locations of both zeroes and open-loop eigenvalues are
determined as in Fig. 7.1, little can be said about the general shape of the
root locus branches. This is clearly illustrated by Fig. 7.2. It shows the root
locus of the spring-mass inter-area mode model for three values of M1
while M2, k1 and k2 are held constant.
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Fig. 7.2 Root locus of the spring-mass inter-area mode model with feedback from
time derivative of x3 to F3. M1 takes the values 3 (left), 4 (middle) and 10
(right) while k1=5, k2=10, M2=2.

Zeroes for Feedback from Closest Machine Frequency

In the spring-mass inter-area mode model, the equivalent to closest
machine frequency is v1 if γ is greater than one and v2 if γ is less than one.
Without loss of generality, γ is assumed to be less than one in the
following. The control law is consequently,

F3 = d3v2

which changes only a single element of (2.29) as,
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(7.4)
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Eliminating x3 yields,
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(7.5)

where β-1=k1+k2. By now letting the gain d3 go to infinity, the resulting
eigenvalues of the closed loop system are the zeroes of the open loop
system. The feedback path from v2 to its time derivative is made very fast
and thus prevents deviations from zero in v2. The corresponding eigenvalue
is dominated by this path and yields the first zero,

z1 ≈ − k2

k1 + k2

d3

M2
→ −∞

The state x2 can be any constant value and will thus contribute to the
system dynamics as an eigenvalue in the origin, giving

z2 = 0

As v2 is zero, so is its time derivative. From the second row of (7.4) it can
then be concluded that x3 will be constant, as it depends only on x2 and F2
that both are constants. A small part of (7.4) now describes the remaining
dynamics,

diag
M1
1
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= 0 −k1
1 0







v1
x1







+ 1 k1
0 0







F1
x3







which yields two imaginary zeroes,

z3 = z4
* = j

k1

M1

For infinite gain the mass M2 and the point described by x3 are thus fixed
and F3 absorbs the forces caused by the swinging mass M1. The resulting
dynamics equals a part of that for infinite gain feedback from local bus
frequency. It is therefore natural that z3 and z4 obtained here agree with z2
and z3 of (7.2). Again the zeroes can be compared to the eigenvalues λ1
and λ2. As γ is assumed to be less than one here, the oscillatory zeroes have
a frequency less than that of the original inter-area mode, as shown in
Fig. 7.3.
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Fig. 7.3 Locations of oscillatory eigenvalues (x) and zeroes (o).

Again the rule of [Miu 1991] above applies, as the complex conjugate
zeroes are the resonance frequencies of the substructure that can move,
when the sensor and the actuator are fixed.

Remark: Equation (7.5) can be formulated as ẋ = Ax + Bu . The trace of A
is obtained by summing the diagonal elements, which in this case yields the
expression for z1 above. The trace of A equals the sum of the eigenvalues,
which for infinite gain is z 1 . It can thus be concluded that the
approximation of z1 can be skipped making z1 equal to the expression
given.

7.2 Multi-Modal Decomposition

The modal description of the system with constant gain output feedback,

ż = Λ + ∆Λ[ ]z = Λ + ψB ode I − KD ode( )−1KC ode Φ[ ]z (7.6)

also given as (2.10), shows that for large gains, the direct matrix Dode
needs to be taken into account. For the scalar control law u=Ky an infinite
feedback gain K gives the eigenvalues and consequently the zero locations
as,

Λ + ∆Λ = Λ − ψBodeDode
−1 CodeΦ (7.7)

where Dode plays a central part. From (2.29) it can be realized that using
local phase angle as measurement signal and active power as control signal
yields a nonzero Dode, since both input and output are algebraic variables
related through an algebraic equation. As a lead filter also includes a direct
term, the same applies for feedback from local bus frequency. On the other
hand the frequency of the closest machine is a dynamic state. Therefore
feedback from this signal to active power does not give rise to a direct
matrix. But how can the zero locations be similar as in Fig. 7.1 and 7.3,
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when Dode is zero in one case and not in the other? The answer is that
impact of other system modes is more important. A simplified, yet very
powerful illustration to this is given in [Larsen et al 1995], where Multi-
Modal Decomposition (MMD) as in Fig. 7.4 is applied.

KPSDC(s)

KILi(s)

Koi(s)Kci(s)

1
s

1
s

Kmi(s)

Inner Loop
Feedback

+

+

–

–

Swing
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Power
System
(Except
ith Mode)

Power
System
Damping
Controller

u y

∆ωmi

∆δmi

Fig. 7.4 Partial Multi-Modal Decomposition according to [Larsen et al 1995], with
transfer function blocks Kci(s), K o i(s), K m i(s), K ILi(s) specifying the
connections between inputs, outputs, velocity and angle of an electro-
mechanical mode.

Mode i is then extracted and modelled as a modal system, connected to an
input and an output via transfer functions Kci(s) and Koi(s) corresponding
to the mode controllability and observability factors. The power system
damping controller KPSDC(s) forms a feedback loop from the output to the
input. The rest of the system is represented by a transfer function KILi(s).

Together with the controller, KILi(s) forms an inner loop that bypasses the
dynamics of the mode to be damped. Transfer function zeroes occur at
complex frequencies, for which KILi(s) and the path via the modal system
cancel each other. KILi(s) thus largely determines the location of zeroes. As
Dode is only a (constant) part of KILi(s) it only partly affects the zeroes.

The aim of the damping controller is to move the eigenvalues of mode i. If
the mode is lightly damped and if its frequency and mode shape are not
altered considerably by the control, the shift can be approximated
according to [Larsen et al 1995],
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∆λ i ≈ − 1
2

K ci I − K PSDC K ILi( )−1K PSDC K ci (7.8)

where all transfer functions are evaluated at s=jωi; the eigenfrequency of
λi. Note the resemblance between the matrix expression (7.6) and (7.8)
using transfer functions.

From Fig. 7.4 it is obvious, that if the selected inputs and outputs are
weakly related to mode i, then the inner loop will be relatively more
important. This fact is particularly important for dampers that are located
far away from the generators with both measurement signals and their
actuator outputs indirectly related to the swing mode dynamics. This
applies for the damping systems analysed above and for all FACTS
dampers.

The existence of a nonzero KILi has two consequences: as discussed above,
it limits the control authority by introducing zeroes. But it can also cause
instability if,

KPSDC jωi( )KILi jωi( ) = I

In either case, feedback signal selection is critical since a good choice
yields a small inner loop gain. To guarantee that a SISO system is robust to
variations in KILi, the controller gain should be chosen so that

KPSDC jωi( ) KILi jωi( ) GM = 1

where GM is a suitable gain margin [Larsen et al 1995]. If G M is
sufficiently large, the parenthesized expression of (7.8) is approximately
equal to unity. The eigenvalue shift due to this maximum gain is termed
Maximum Damping Index  (MDI) in [Larsen et al 1995] and is dominated
by the controllability and observability factors Kci and Koi together with
the controller.

When analyzing the joint operation of several damping controllers, KPSDC
and KILi are transfer function matrices. The stability limit is now described
by,

max eig KPSDC jωi( )KILi jωi( )[ ] GM = 1

By searching the space spanned by the controller gains, GM  may be
maximized. The resulting gains and GM, can then be used for a multi-
controller MDI  which is described in [Othman et al 1995].
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u y

-Dode
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Fig. 7.5 Block diagram of a controller that cancels Dode.

It may seem that the inner loop can be cancelled by compensating for it in
the controller. As an example Dode can be compensated for, if the
controller KPSDC(s) is replaced by the control law in Fig. 7.5,

U s( ) = KPSDC s( )
1 + KPSDC s( )Dode

Y s( )

where U(s) and Y(s) are the Laplace transforms of the input and the output
signals. In the case when phase angle is measured, and the control signal is
active power, the controller is a lead filter with a gain d3 and a rather small
time constant T ,

KPSDC s( ) = d3s

1 + sT
;  Dode = −1

k1 + k2

Inserting this into the control law above yields,

U s( ) =

d3s

1 + sT

1 + d3s

1 + sT

−1
k1 + k2

Y s( ) = d3s

1 − s
d3

k1 + k2
− T







Y s( )

The eigenvalue of the controller will be positive already for small values of
the gain d3. As an unstable controller is not desired, compensation of Dode
is avoided.
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7.3 Three Machine System

The suggested controllers are now numerically evaluated for the three
machine system. The aim is to damp both oscillatory electro-mechanical
modes with the active power injection of one damper. The magnitude
information of Table 3.1 shows that bus N8 is the preferred location, even
if bus N6 would yield slightly better controllability of the 1.8 Hz mode.
The active power is controlled proportional to the local bus frequency or to
the frequency of the closest machine.

Local Bus Frequency

Neither the spring-mass model nor the EUROSTAG models feature bus
frequency as a natural state. Instead it is obtained by lead filtering a
measurement of the phase angle at the bus. The transfer function of the
resulting controller is,

P s( )
θ s( )

= Kd
s

1 + sτ
(7.9)

where the time constant τ is set to 10 ms and Kd is the damper gain to be
determined. This yields a phase advance of 85.4° at 1.3 Hz and 83.4° at 1.8
Hz, which is fairly close to the desired 90°.

According to (2.11), the eigenvalue sensitivity to the gain Kd can be
obtained by multiplying the complex numbers for active power mode
controllability and phase angle mode observability. In this case the
controller has dynamics, and therefore the controller transfer function in
(7.9) without Kd and evaluated at the mode frequency, is required as a third
factor. The resulting numbers are given in Table 7.1, which indicates that
in all cases the eigenvalues initially move almost straight to the left. The
magnitude information supports the decision to place the damper at bus N8
with the very same reasoning as that based on controllability alone.

Bus 1.3 Hz mode 1.8 Hz mode

N5 0.330e-j166° 0.032e-j138°

N6 0.239e-j164° 0.327e-j168°

N8 1.582e-j174° 0.281e-j160°

Table 7.1 Eigenvalue sensitivity of the electro-mechanical eigenvalues in the second
quadrant to local feedback from bus frequency to active power at the three
load buses.
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Introducing the controller at bus N8 and varying the gain yields the root
locus of Fig. 7.6, which resembles that of the right graph of Fig. 7.2. The
two oscillatory modes of the three machine system have zeroes with higher
frequency and comparable damping when compared to the uncontrolled
system eigenvalues. The behaviour of the spring-mass model inter-area
mode thus agrees perfectly with both these modes. The third zero on the
imaginary axis is a new electro-mechanical mode, replacing the rigid body
mode. This is natural as the number of machines and modes are related: an
N machine system has N-1 oscillatory modes. The introduction of the
damper with infinite gain acts like a reference machine, thereby increasing
the number of oscillatory modes by one.
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Fig. 7.6 Root locus for feedback from local frequency at bus N8 to active power
injection at the same bus. Eigenvalue locations for the gains  zero (+),
0.87 p.u./(rad/s) (x) and infinity (o) are indicated.

As predicted by the eigenvalue sensitivity measures, the 1.8 Hz mode is
less influenced by the controller than the 1.3 Hz mode. Although both
modes are damped, maximum damping does not occur for the same gain in
both cases. The damping ability of the controller is best used by giving
priority to the 1.3 Hz mode and maximize its damping by selecting the gain
0.87 p.u./(rad/s). This corresponds to 550 MW/Hz and the eigenvalues
-1.1±j11.5, -1.7±j8.8 and -2.7±5.0 indicated by 'x' in Fig. 7.6.
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Closest Machine Frequency

The active power injection at bus N8 will now be controlled by the rotor
frequency of the closest machine. For the spring-mass model the control
action and the measurement are then done on the same side of the swing
node. This gives active power mode controllability and phase angle mode
observability the same sign. For the three machine system this is
demonstrated for each mode using the 3D-graphs of Figs 3.3 and 4.3. The
mode observability of machine frequency is proportional to that of machine
angle, which can be obtained by extrapolating the phase angle observability
in the network beyond the machine terminals. This method indicates S2
and S3 as possible candidates for the 1.3 Hz mode while S3 and perhaps
H1 can be used for the 1.8 Hz mode. Despite the uncertainty about the sign
of the machine frequency controllability of H1 for the 1.8 Hz mode, it is
clear that only S3 can be used for simultaneous damping of both modes.

A safer alternative is to use the exact observability information of Table
4.3. Combining this with the active power mode controllability at bus N8
in Table 3.1  gives the eigenvalue sensitivities of Table 7.2.

Machine 1.3 Hz mode 1.8 Hz mode

H1 1.321ej2° 0.093ej13°

S2 3.902e-j175° 0.917e-j3°

S3 2.358e-j173° 3.081e-j175°

Table 7.2 Eigenvalue sensitivity of the electro-mechanical eigenvalues in the second
quadrant to feedback from machine frequency to active power at bus N8.

It is now evident that S3 is the only choice that will move the eigenvalues
of both modes to the left. It also has the greatest impact on the 1.8 Hz mode
and an acceptable influence on the 1.3 Hz mode, but this is less important
than having the correct phase.
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Fig. 7.7 Root locus for feedback from frequency of machine S3 to active power
injection at bus N8. Eigenvalue locations for the gains  zero (+),
0.5 p.u./(rad/s) (x) and infinity (o) are indicated.

Active power injected at bus N8 controlled by the rotor frequency of
machine S3 gives the root locus of Fig. 7.7. Both the oscillatory modes
move towards zeroes with low damping and lower frequency than the
eigenvalues of the uncontrolled system. Just like for the bus frequency
feedback case, both modes behave like the inter-area mode of the spring-
mass model.

When increasing the gain from zero both the modes will be better damped.
As the eigenvalue sensitivity of the 1.8 Hz mode to the feedback gain is
greater than that of the 1.3 Hz mode, the 1.8 Hz mode reaches its point of
maximum damping first. Close to this the real parts of both these
eigenvalues are equal, which means that both modes have the same
absolute damping. This point with gain 0.5 p.u./(rad/s) corresponding to
310 MW/Hz, is therefore considered the optimum one giving the
eigenvalues -1.8±j7.7 and -1.8±j10.3, indicated by 'x' in Fig. 7.7.

It should be mentioned that both modes could be damped also if feedback
were taken from S2. This however requires a compensation network that
yields 180° phase shift between the two mode frequencies. Although
possible, the simple gain suggested above is preferred due to its inherent
structural robustness to changes in e.g. eigenfrequencies.
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7.4 Twenty-three Machine System

Controlled active power injection at a load bus is now introduced in the
twenty-three machine system. The main objective of the controller is to
increase damping of the three least damped modes in the fault case when
the double line N4044-N4045 is out. The selected modes in Table 2.2, are
given priority in proportion to their need of additional damping.

Table 3.2 shows that the active power controllability of Mode 1 is greatest
at bus N4072 followed by  N63 and N4071. The External area including
N4072 is however considered inaccessible and the damper is therefore
placed at N63. It exhibits the greatest mode controllability of Mode 2 and
is reasonably effective for Mode 3 as well.

The active power injection is controlled in proportion to the local
frequency or to the frequency of the closest machine. Both cases are
examined starting with local bus frequency.

Local Bus Frequency

Just like for the three machine system, the phase angle is measured and sent
to the controller (7.9). The eigenvalue sensitivity to the gain Kd at each
load bus can now be derived as in the previous section. It shows that local
feedback from bus frequency to active power at any bus has either a
beneficial or a negligible effect on damping of the three modes. At the
buses with large sensitivity magnitude, the direction is close to the desired
±180°, and at buses with an argument between +90° and -90°, the
magnitude is so small that the eigenvalue will not move far. Table 7.3
contains the results for the buses N51 and N63.

Bus Mode 1 Mode 2 Mode 3

N51 0.187e-j176° 0.223e-j171° 0.020ej22°

N63 0.167e-j171° 0.063e-j172° 0.055ej175°

Table 7.3 Eigenvalue sensitivity of the selected eigenvalues in the second quadrant to
local feedback from bus frequency to active power at the load buses N51
and N63.

Bus N51 is included as both Mode 1 and 2 are most sensitive to feedback
there. This does not coincide with maximum active power mode
controllability, which occurs at bus N63. The control signal magnitude of
the damper at N63 may therefore differ from that at N51 if the two
controllers are tuned for the same damping of these modes.
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According to Table 7.3, Mode 3 will initially be less damped as the gain of
the controller at N51 is increased from zero. This information can also be
obtained from Fig. 3.5 together with Fig. 4.5: for Mode 3, the active power
mode controllability and the phase angle mode observability have different
signs at the buses N51, N4045 and N1045 respectively. In all other cases
they have the same sign, corresponding to an initial leftward eigenvalue
shift, when the gain of a local controller like (7.9) is increased from zero.

Bus N63 is chosen for its high controllability of Modes 1 and 2, but in
order to explore the consequences of the inappropriate phase shift, bus N51
will also be studied. The root locus plots of Figs 7.8 and 7.9 show the
eigenvalue locations for a varying controller gain Kd at the buses N51 and
N63 respectively. The clutter at the real axis is due to the difficulty to trace
the eigenvalues correctly and can be disregarded.
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Fig. 7.8 Root locus for feedback from local frequency at bus N51 to active power
injection at the same bus. Eigenvalue locations for the gains  zero (+),
2.78 p.u./(rad/s) (x) and infinity (o) are indicated. The right graphs show
details from the left plot: Mode 3 (upper) and rigid body mode (lower).

The eigenvalues of most electro-mechanical modes coincide with zeroes,
indicating insignificant mode controllability or mode observability. Only
three modes are considerably affected by the controllers. A slow complex
mode goes unstable for sufficiently large gain, while Mode 1 and 2 move
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via increased damping towards zeroes with higher frequency and relatively
low damping.

According to the spring-mass model, the slow complex undamped zeroes
form a new electro-mechanical mode that replaces the rigid body mode.
The right eigenvectors of the unstable zeroes in Figs 7.8 and 7.9 in both
cases exhibit the characteristics of a rigid body mode – the mechanical
states of all machines are most active and move in unison. Note that the
branches ending at the unstable zeroes have different origins in the two
cases. The rigid body zeroes thus need not originate in the open-loop rigid
body mode.
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Fig. 7.9 Root locus for feedback from local frequency at bus N63 to active power
injection at the same bus. Eigenvalue locations for the gains  zero (+),
4 p.u./(rad/s) (x) and infinity (o) are indicated. The right graphs show details
from the left plot: Mode 3 (upper) and rigid body mode (lower).

In Fig. 7.8 the eigenvalues of Mode 3 move to the right as predicted.
Before reaching very far, they are however attracted by nearby zeroes with
higher frequency and higher damping. Mode 3 is thus practically unaltered
and can be disregarded when selecting the gain. This is instead a
compromise between damping of Mode 1 and 2. As Mode 1 should be
given priority, it is natural to maximize its damping.
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For the N51 case the gain 2.78 p.u./(rad/s) or 1750 MW/Hz moves Mode 1
to -0.5±j3.4 and Mode 2 to -1.0±j4.3 which is indicated by 'x' in Fig. 7.8.
The damping of Mode 3 is unaltered just like that of the eigenvalues
passing the imaginary axis for large gains.

With the damper at N63 the optimum gain is chosen as 4 p.u./(rad/s) or
2500 MW/Hz, which places Mode 1 at -0.9±j3.5 and Mode 2 at -0.85±j4.4
(indicated by 'x' in Fig. 7.9) while the damping of Mode 3 is slightly
improved. The eigenvalues moving towards the unstable zeroes have come
closer to the imaginary axis, but are still well damped.

It is important to realize that when the eigenvalues are shifted as in Figs 7.8
and 7.9, the eigenvectors are also affected. Fig. 7.10 illustrates the complex
values of the active power mode controllability at the load buses, for the
gains d51=2.78 and d63=4 p.u./(rad/s) respectively.

N1042   

N4072   

N47     

N51     

N63     

Im
a

g

Real

Mode 1

N1042   

N4072   

N47     N51     

N63     

Im
a

g

Real

Mode 2

N1042   

N4072   

N47     

N51     

N63     

Im
a

g

Real

Mode 3

N1042   

N4072   

N47     

N51     

N63     

Im
ag

Real

Mode 1

N1042   
N4072   

N47     N51     

N63     

Im
ag

Real

Mode 2

N1042   

N4072   

N47     

N51     

N63     Im
ag

Real

Mode 3

Fig. 7.10 Complex active power mode controllability at the load buses when one
damper is in use. For the upper graphs the damper location is bus N51 with
gain d51=2.78 p.u./(rad/s), while for the lower graphs the location is bus
N63 and the gain d63 is 4 p.u./(rad/s).

Comparing Fig. 7.10 to the situation with no dampers in Fig. 3.4, shows
that the damper has a strong effect on the argument of the eigenvector
elements. It is clear that the eigenvectors of Modes 1 and 2 are affected the
most, which is expected as it was the corresponding eigenvalues that
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received the most additional damping. The same applies for the complex
phase angle mode observability at the load buses, shown without dampers
in Fig. 4.4 and in Fig. 7.11 for the two single damper cases above.
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Fig. 7.11 Complex phase angle mode observability at the load buses when one
damper is in use. For the upper graphs the damper location is bus N51 with
gain d51=2.78 p.u./(rad/s), while for the lower graphs the location is bus
N63 and the gain d63 is 4 p.u./(rad/s).

Due to the greater variation in arguments it is now impossible to fit a
straight line to the controllability values as in Fig. 3.4 or to the
observability values as in Fig. 4.4. The 3D-visualization of active power
mode controllability and phase angle mode observability used in Chapters
3 and 4 can therefore now only be applied to Mode 3, that is practically
unaffected by the two suggested dampers.

Closest Machine Frequency

For loads that are directly or radially connected to a machine bus, the active
power controllability of all modes is similar at the load and at the machine.
The identification of the closest machine is therefore trivial at the load
buses N1012, N1013, N1022, N1042, N1043, N2032, N4071, N4072, N41,
N42, N47, N51, N62 and N63. The machine closest to bus N63 is thus
A4063.
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Fig. 2.9a also indicates that the machine frequency observability of Mode 1
and 2 is greatest at A4051. This agrees well with the large bus frequency
observability at bus N51 and may even compensate for the lower active
power controllability there. Active power injection at bus N51 controlled
by the machine frequency of A4051 is therefore considered along with the
combination of N63 and A4063. To start with, the frequency signals are
taken from machine 1 at each plant.

Table 7.4 shows the eigenvalue sensitivity of the selected modes to the two
feedback alternatives. Indeed both Mode 1 and 2 are more sensitive to the
control of active power at bus N51 than at bus N63. On the other hand,
Mode 3 exhibits a rightward direction like in the local bus frequency case.

Bus Machine Mode 1 Mode 2 Mode 3

N51 A4051_1 0.265e-j178° 0.395e-j174° 0.040ej19°

N63 A4063_1 0.236e-j173° 0.152e-j170° 0.117ej173°

Table 7.4 Eigenvalue sensitivity of the selected eigenvalues in the second quadrant to
feedback from ωA4051_1 and ωA4063_1 to active power injection at bus N51
and N63 respectively.

The root locus plots resulting from a gain variation in each case are given
as Figs 7.12 and 7.13. Again the controller substantially influences only
three modes, while most of the electro-mechanical modes are cancelled by
zeroes. Two of the selected modes are damped, while another mode moves
towards a pair of complex unstable zeroes just like in Figs 7.8 and 7.9.
Whereas the achievable damping of one mode is comparable to that in the
bus frequency case, the other one can be almost completely damped.
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Fig. 7.12 Root locus for feedback from rotor angular velocity of A4051_1 to active
power injection at bus N51. Eigenvalue locations for the gains zero (+),
2.4 p.u./(rad/s) (x) and infinity (o) are indicated. The right graphs show
details of Mode 3 (upper) and the origin (lower).

Although the locations of zeroes are very similar in Figs 7.12 and 7.13, the
resulting plots are different and look like the left and right graphs of Fig.
7.2. For active power injection at bus N51, the maximum damping of Mode
1 is limited while that of Mode 2 is very high. The location N63 gives the
opposite result. This difference in damping ability was not seen when using
bus frequency for feedback. A possible explanation is that Modes 1 and 2
change identities as their branches come very close in Fig. 7.12. A similar
phenomenon is reported in [Klein et al 1992]: measures based on
eigenvectors are incorrect when two eigenvalues are close. Due to the
uncertainty about who is who of the two modes, they will be addressed as
the fast and slow study mode.
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Fig. 7.13 Root locus for feedback from rotor angular velocity of the machine
A4063_1 to active power injection at bus N63. Eigenvalue locations for the
gains zero (+), 2.6 p.u./(rad/s) (x) and infinity (o) are indicated. The right
graphs show details of Mode 3 (upper) and the origin (lower).

Mode 3 initially moves to the right in Fig. 7.12, but in both cases it is
practically uncontrollable. The gain selection is therefore based on the two
first modes. The gain for active power at bus N51 controlled by the rotor
angular velocity of the machine A4051_1 is set to 2.4 p.u./(rad/s) or 1500
MW/Hz, which yields maximum damping of the slow study mode (-
0.7±j3.5) and even better damping of the fast one (-0.9±j3.8) as indicated
by 'x' in Fig. 7.12. The optimum gain for controlling active power at bus
N63 is 2.6 p.u./(rad/s) or 1600 MW/Hz. This maximizes the damping of the
fast study mode (-0.6±j4.2), while that of the slow study mode is slightly
better (0.8±j3.1) as indicated by 'x' in Fig. 7.13.

The eigenvalue shifts achieved above again implicate a change in the
eigenvectors. The active power mode controllability at the load buses is
shown in Fig. 7.14 for the gains d51=2.4 and d63=2.6 p.u./(rad/s).
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Fig. 7.14 Complex active power mode controllability at the load buses when one
damper is in use. For the upper graphs the damper location is bus N51 with
gain d51=2.4 p.u./(rad/s), while for the lower graphs the location is bus N63
and the gain d63 is 2.6 p.u./(rad/s).

The machine frequency mode observability, which resembles the mode
shape, is shown in Fig. 7.15 for the cases when d51=2.4 or d63=2.6
p.u./(rad/s). Modes 1 and 2 again experience a great variation in arguments
as compared to Figs 3.4 and 4.4 that show the corresponding values when
no damper is present.
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Fig. 7.15 Complex mode observability for machine frequency when one damper is in
use. For the upper graphs the damper location is bus N51 with gain d51=2.4
p.u./(rad/s), while for the lower graphs the location is bus N63 and the gain
d63 is 2.58 p.u./(rad/s).

Selecting d51=2.4 p.u./(rad/s) places the eigenvalues of Modes 1 and 2
fairly close to each other and it is clear from Fig. 7.12 that the root locus
branches are attracted to each other. The upper parts of Figs 7.14 and 7.15
indicate that the eigenvectors of the two modes are quite similar. As the
modes are identified by their eigenvectors, it is hard to tell them apart at
this point. This observation supports the assumption above that Modes 1
and 2 actually change identities with each other for a value of d51 close to
2.4.

An alternative to using the rotor velocity of one machine at a power station
is the average velocity of both machines. However, this has no effect on the
results given here, as the operating points of machine 1 and 2 are
completely or almost identical. For all electro-mechanical modes except the
local mode, the two machines then operate as one of twice the size. But the
local mode, where they swing against each other, is not controllable with
active power injection in the network.
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7.5 Conclusions

Controlling active power at one bus in proportion to the local bus
frequency or the frequency of the closest machine can increase damping of
more than one mode, while leaving other modes unaffected. Damping is
however limited as the eigenvalues tend towards zeroes with low damping.
The locations of these zeroes relative to the open-loop eigenvalues are
qualitatively the same for the inter-area mode of the spring-mass model as
for the electro-mechanical modes of the multi-machine power systems. In
both cases rigid body zeroes with little or even negative damping arise.

No certain statements can be made about the shape of the root locus. If the
modes are sufficiently far from each other in the complex plane, the
branches are in general semi-circular. The same shape is observed, when
changing the parameters of a load model where the active power depends
dynamically on the voltage [Hiskens and Milanovic 1995]. If instead both
eigenvalues and eigenvector shapes are sufficiently close the branches
interact. A consequence of this is that modes may change identities even if
their branches do not meet. This is observed for Modes 1 and 2 in Fig.
7.12, but also explains the fact that the unstable zeroes represent a rigid
body mode even if the branches leading to them do not originate in the
rigid body mode eigenvalues of the open loop system.

The impact of zeroes on the damping of a mode is reduced as the
measurement signal is closer related to a machine that participates strongly
in the mode. Mode 1 and 2 are dominated by the machines A4063 and
A4051 respectively. Placing the controller close to A4063 will therefore
promote damping of Mode 1 rather than Mode 2, while the opposite applies
for a location at A4051.

Gains are chosen for maximum damping of either Mode 1 or 2 and
reasonable damping of the other one, even if acceptable damping is
obtained already at much lower gains. This gives values of 1250-2500
MW/Hz which agrees well with the gains suggested on page 143 in [Smed
1993] for the damping controller of the Fenno-Skan HVDC link. The gains
can also be compared to the characteristics of the NORDIC32 system
[CIGRÉ 1995]: the frequency sensitivity of the loads is 165 MW/Hz and
the total frequency control gain of 4375 MW/Hz at steady state.
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