
2
Modelling

… in which linear models and modal analysis are outlined, followed by the
presentation of three test systems and mechanical equivalents, that are used
throughout the thesis.

Whereas setting up a linearized power system model earlier has been a
tedious and demanding task, new digital simulators feature automatic
functions for this and can export a complete matrix model of the entire
system. This considerably improves the reliability of the linear model and
at the same time allows the analyst to concentrate on the analysis itself. An
important prerequisite is that the structure and the properties of the
exported model are well known. This is the aim of section 2.1, which
describes the linearized differential-algebraic matrix equation and its
properties using the more common description based on ordinary
differential equations as a comparison. The power of linear models is to a
great extent due to the existence of modal analysis, which is outlined in
section 2.2. A few techniques for model reduction are also mentioned there,
as they rely on modal analysis and are very common. Three test power
systems are shortly described in section 2.3. They represent three different
levels of complexity and are used throughout the thesis to offer a
quantitative dimension to the analytical treatment. Mechanical analogs to a
local mode and an inter-area mode are presented in section 2.4. They will
be used extensively in the following chapters.

2.1 The Modelling Procedure

Setting up a linearized power system model for control design purposes
typically involves going through three to five of the following consecutive
steps:

• selecting component models;
• merging component models into a usually nonlinear system model;
• forming a matrix equation through linearization;
• eliminating algebraic variables;
• forming transfer functions.
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While this procedure is straightforward in principle, it could pose practical
difficulties due to the amount of variables and parameters to administrate.
This problem is, however, solved by modern software that is commercially
available. Software for time simulation of power systems generally offers
only a limited number of component representations, which facilitates the
first step. Before running simulations, the nonlinear system of equations
describing the entire power system is created. Some simulators, such as
EUROSTAG from Tractebel-Electricité de France [EUROSTAG], also
feature functions for linearization and export of a linearized model of the
entire power system. Fig. 2.1 shows the procedure for creating a linearized
model.

Enter network Enter dynamics Enter events

Initialize
Start simulation

Stop simulation

EUROSTAG_E

EUROSTAG_LF

EUROSTAG_S

Linearize

File network.ech

File network.sav

File dynamics.dta File case.seq

File case.key File case.lin

Matlab

Compute load flow

Fig. 2.1 A linearized model can be obtained from the time simulation program
EUROSTAG: Network, dynamics and event files are created with the editor
EUROSTAG_E. Having computed the initial load flow solution with
EUROSTAG_LF, the simulator EUROSTAG_S is run. During steady state,
the system is linearized and as simulation terminates two files containing the
system model are written. These can then be read into e.g. Matlab.

The nonlinear time simulation model and the linearized model for control
design thus contain the same initial models, use the same parameter set and
operating point and are consequently guaranteed to be consistent. By
finally loading the linearized system into for example Matlab [Matlab],
transfer functions can conveniently be formed. In practice, the user thus
only needs to select component models, connect them and enter their
parameter values. To prove general properties through analytical reasoning,
however, some modelling steps are outlined in more detail below.

Forming the Linear Differential-Algebraic Equation

The full system is in general described by a set of nonlinear vector valued
differential-algebraic equations (DAE),
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ẋd = f xd ,xa,u( )
0 = ea = g xd ,xa,u( )

y = h xd ,xa,u( )
(2.1)

where xd and xa are the vectors of dynamic and algebraic variables
respectively while u and y are the input and output vectors. The variables
that are set to zero by the algebraic equation are denoted ea. Alternatively u
and y can be incorporated as algebraic variables together with xa, forming
a vector x̃ a . This gives a more compact description,

ẋd = F xd , x̃a( )
0 = ea = G xd , x̃a( )

Small disturbance stability analysis treats only small deviations from a
stationary operating point. A model linearized around this point is valid in
its neighbourhood. Coordinates for small deviations from the linearization
point (denoted by superscript 0) are then introduced,

∆xd = xd − xd
0

∆xa = xa − xa
0

∆u = u − u0

∆y = y − y0

A linear DAE is then obtained by partial differentiation of the nonlinear
functions f, g and h,

Edae
d

dt
∆xd
∆xa







= A dae
∆xd
∆xa







+ Bdae∆u

∆y = Cdae
∆xd
∆xa







+ Ddae∆u

(2.2)

using

Edae = I 0
0 0







and the Jacobian matrices,
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A dae = A11 A12
A 21 A 22







=

∂f

∂xd

∂f

∂xa
∂g

∂xd

∂g

∂xa



















     Bdae = B1
B2







=

∂f

∂u
∂g

∂u

















Cdae = C1 C2[ ] = ∂h

∂xd

∂h

∂xa









         Ddae = D1 = ∂h

∂u

An equivalent and very convenient expression is obtained by merging the
dynamic states ∆xd and ∆ x̃ a  into a single vector ∆x,

E∆ẋ = A∆x (2.3)

where

∆x = ∆xd
∆x̃a







=

∆xd
∆xa
∆u
∆y

















∆x contains both dynamic states, algebraic variables, inputs and outputs. As
shown in Fig. 2.1, EUROSTAG exports the linearized system as two files.
One (case.lin) contains the matrices A and E, while the other (case.key) is a
description of the contents of ∆x. By inspecting E and A, inputs can be
identified as independent algebraic variables. Similarly explicit outputs
appear as variables upon which no other variables depend. Using this
technique, the different parts of ∆x are distinguished, Edae is formed and A
is partitioned into Adae, Bdae, Cdae and Ddae.

While the general model of (2.1) could include time as an explicit variable,
the linearized models of (2.2) and (2.3) are considered time invariant. Time
varying properties such as changing operating points require repeated
linearization. The fact that a valid linearized model is available gives
access to the extensive set of techniques based on eigenanalysis. The most
important features of this will be treated in Section 2.2.

In the following, ∆ is omitted as all linear equations use variables that
denote deviations from the linearization point.

Eliminating Algebraic Variables

In the following it is assumed that A22 is invertible. The algebraic variables
can then be uniquely determined from the algebraic part of (2.2) as,
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xa = −A 22
−1 A 21xd + B2u( ) (2.4)

The elimination of xa , yields a matrix ordinary differential equation
(ODE),

ẋd = A odexd + Bodeu

y = Codexd + Dodeu
(2.5)

where

A ode = A11 − A12A 22
−1A 21

Bode = B1 − A12A 22
−1B2

Code = C1 − C2A 22
−1A 21

Dode = D1 − C2A 22
−1B2

Algebraic variables are mostly introduced as they naturally appear in a
certain model structure with certain parameters, which is retained in the
DAE model. The part of this structure that is contained in the matrix A22, is
in general lost in the conversion to ODE model as A22 is inverted. Due to
this loss of information, the conversion is not reversible.

Note that a nonzero Dode gives rise to a direct dependence between an
input and an output. Installing a controller with a direct term, such as a
proportional controller, between these yields an algebraic loop that may
complicate simulations. This situation arises if D1 is nonzero, or if both the
input and the output are algebraic variables causing B2 and C2 to be
nonzero.

While both the ODE and DAE descriptions can be considered as state
space representations, control design methods known as state space
methods predominantly handle only ODE models.

Forming Transfer Functions

An alternative to the state space approach is frequency domain methods
based on transfer functions. Starting out from an ODE model, the
corresponding set of transfer functions is defined as,

Y s( )
U s( )

= Code sI − A ode( )−1Bode + Dode (2.6)
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where s is the Laplace operator or complex frequency. Transfer functions
are well suited for determining transfer function zeroes. An input signal
having the frequency of a transfer function zero is blocked and will not
affect the output. While being unique for SISO systems, the definition of
transfer zeroes for multi-input-multi-output (MIMO) systems is less clear
[Maciejowski 1989]. As a transfer function maps inputs to outputs, it is
very convenient when a model is to be based on measurements rather than
a known physical structure. This requires entirely different methods than
those presented above. Transfer functions carry magnitude and phase
information of a signal path as a function of frequency which is used when
selecting the proper phase shift of a controller. Compared to an ODE
model, a transfer function model contains even less information as all
structural system information has been removed.

2.2 Modal analysis

In a linear system, the dynamics can be described as a collection of modes.
A mode is characterized by its frequency and damping and the activity
pattern of the system states. If the damping is low, which is the case for
electro-mechanical modes or swing modes in power systems, they can be
thought of as resonances. The mode concept is based on a change of
coordinates by diagonalization. As in many engineering areas an adequate
choice of coordinates can decouple complex relations. This is particularly
true with modal coordinates, which offer a convenient simplification of the
system while being valid for the full system.

The Matrix Ordinary Differential Equation

The ODE system matrix Aode can normally be diagonalized by the square
right modal matrix Φ,

Φ−1A odeΦ = Λ
A odeΦ = ΦΛ

(2.7)

The columns of Φ are the right eigenvectors Φi to Aode, while the diagonal
elements of the diagonal matrix Λ are the eigenvalues λi of Aode.

Similarly the left modal matrix Ψ holds the left eigenvectors Ψ i as rows
and also diagonalizes Aode,

ΨA odeΨ−1 = Λ
ΨA ode = ΛΨ

(2.8)
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The definitions (2.7) and (2.8) allow scaling of the eigenvectors with any
complex number. In order for the left and right eigenvectors to be
consistent it is required that ΨiΦj=1 for i=j (and ΨiΦj=0 for i≠j). This is
conveniently guaranteed by computing Ψ as the inverse of Φ. If there are
eigenvalues at the origin, Φ can however not be inverted. Ψ i and Φi
corresponding to such an eigenvalue are orthogonal and their product is
zero. In practice eigenvalues are unlikely to exactly equal zero. Instead
they take a very small value, leading to an ill-conditioned matrix. The
inverse of Φ can then be computed, but its validity depends on the
numerical accuracy that is used. It is therefore necessary to verify that the
product of associated left and right eigenvectors of interest is one.

Provided that Ψ and Φ are available, the ODE system can be transformed
into modal coordinates z through a transformation,

xd = Φz

Φż = A odeΦz + Bodeu
y = CodeΦz + Dodeu



ż = Φ−1A odeΦz + Φ−1Bodeu
y = CodeΦz + Dodeu





ż = Λz + ΨBodeu
y = CodeΦz + Dodeu



Note that the dynamics now are governed by uncoupled first order
differential equations — the modes. As seen in the block diagram of Fig.
2.2, the input u j affects the mode i through element (i,j) of the mode
controllability matrix [Porter and Crossley 1972] ΨBode. Analogously
mode j appears in the output yi to an extent that is determined by element
(i,j) of the mode observability matrix [Porter and Crossley 1972] CodeΦ.

It is of utmost importance to observe that these measures of controllability
and observability are quantitative. This is in contrast to the qualitative
answer – yes or no – obtained by checking the rank of the controllability
and observability matrices as in [Åström and Wittenmark 1990]. Chapters
3 and 4 will treat mode controllability and mode observability more in
detail.
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Σ Aode

Ψ Φ

∫

ΣDode

Bode Code

zz

xdxd

u y

·

·

Fig. 2.2 Block diagram of a ODE matrix model showing dependence between mode
coordinates z, dynamic states xd, inputs u and outputs y.

Whereas the mode controllability and mode observability relate inputs and
outputs to the mode, it may also be interesting to quantify how important a
dynamic state is to the mode. This is conveniently done by computing the
participation factors [Pérez-Arriaga 1982] from the left and right
eigenvectors as,

pki = Ψik Φki

The participation factor pki is dimensionless and gives a relative measure of
how much element k in xd participates in mode i.

With zero input the free motion of mode i depends only on its eigenvalue
λi=σi+jωi and its initial value zi(0),

zi t( ) = zi 0( )eλ it = zi 0( )eσ ite jω it

For electro-mechanical power system dynamics, the motion is typically
oscillatory with frequency specified by ω while the oscillation envelope
has a time constant equal to 1/|σ|, where -σ  is the absolute damping.
Improving damping of a mode is thus a matter of making its σ as negative
as possible. The free motion may also be described using the initial value
of xd,

zi t( ) = Ψixd 0( )eλ it
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It is obvious that the left eigenvector Ψi determines how much mode i is
excited by xd(0). Mode i contributes with the following motion to the states
xd(t),

Φiz i 0( )eλ it (2.9)

The right eigenvector Φi thus gives a measure of how well mode i is
coupled to each state. Note that the motions of all modes are summed for
each state.

Introducing output feedback with the simple control law u=Ky modifies the
system dynamics. A nonzero direct matrix Dode gives an algebraic loop,
that may complicate simulations but is easy to solve,

u = I − KDode( )−1KCodexd

In modal coordinates, the new system description is,

ż = Λ + ψBode I − KDode( )−1KCodeΦ[ ]z (2.10)

By instead eliminating u, a different but equivalent expression results,

ż = Λ + ψBodeK I − DodeK( )−1CodeΦ[ ]z
The equivalency is based on the equation,

I − KDode( )−1K = K I − DodeK( )−1

that is proved by multiplying from the left with I-KDode and from the right
with I-DodeK.

From (2.10) the sensitivity of eigenvalue i to changes in the scalar gain K
can be obtained. For small gains (or if Dode is zero) I-KDode≈I, which
gives,

∂λ i

∂K
= ΨiBodeCodeΦi (2.11)

For a single input single output (SISO) system Bode and Code are column
and row matrices respectively. As the resulting number is complex it gives
both direction and magnitude of the movement for small values of K. This
is in full accordance with the comments on the modal controllability and
observability matrices above.
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There are methods to determine more qualitatively which parameter affects
what eigenvalue [Reinschke 1994]. These techniques set up matrices that
indicate if the mode controllability and observability matrices are zero or
not. As power systems are connected and there is no clear direction of
cause and effect, exactly zero controllability or observability is very
unlikely. Although being efficient, at least for reasonably small systems,
such structural measures are therefore of little use for power systems
control [von Löwis 1996].

The Linear Differential-Algebraic Equation

The modal matrices of a linear DAE are defined as in (2.12) and (2.13),
starting out from the compact description of (2.3).

AΦdae = EΦdaeΛ (2.12)

ΨdaeA = ΛΨdaeE (2.13)

Partitioning the eigenvectors of (2.12) into a dynamic part and an algebraic
part corresponding to xd and x̃ a  clarifies the matrix dimensions

A11 A12
A 21 A 22







Φdae,d
Φdae,a







= I 0
0 0







Φdae,d
Φdae,a






Λ

Carrying through the multiplication and solving for Φdae,a yields,

A11 − A12A 22
−1A 21( )Φdae,d = Φdae,dΛ

and

Φdae,a = −A 22
−1A 21Φdae,d (2.14)

where the parenthesized expression is recognized as Aode. It is now evident
that the DAE description shares the eigenvalues and consequently the
dynamic part of the eigenvectors with the ODE description. The algebraic
part of the DAE eigenvectors can be obtained from the dynamic part by a
simple transformation.

Similar expressions naturally apply for the left eigenvectors. Equation
(2.13) can be rewritten as,

Ψdae,d Ψdae,a[ ] A11 A12
A 21 A 22







= Λ Ψdae,d Ψdae,a[ ] I 0
0 0






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which can be separated into,

Ψdae,d A11 − A12A 22
−1A 21( ) = ΛΨdae,d

and

Ψdae,a = −Ψdae,dA12A 22
−1 (2.15)

Fig. 2.3 illustrates the connections between different coordinates for a DAE
system as compared to an ODE system. By tracing the arrows of the block
diagram the same expressions as above can be obtained.

Σ A11

Ψ Φ

∫

A12 A21

Σ–A22
–1

B2 C2

ΣD1

B1 C1

zz

xdxd

xa ea

u y

·

·

           

Σ Aode

Ψ Φ

∫

ΣDode

Bode Code

zz

xdxd

u y

·

·

Fig. 2.3 Block diagram of a DAE (left) and an ODE matrix model (right) showing
dependencies between mode coordinates z, dynamic states xd, algebraic
variables xa, algebraic equation variables ea, inputs u and outputs y.

Φdae,d and Ψdae,d are equal to the ODE modal matrices Φ and Ψ and the
corresponding eigenvectors have the same interpretation. The columns of
Φdae,a show how the mode motions appear in the algebraic variables, while
the rows of Ψdae,a describe how the variables ea, which summed up to zero
in algebraic equations, affect the modes. Note that an algebraic equation
may sum up current injections using voltage as algebraic variables, so that
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element i of xa and element i of ea have different units. The corresponding
eigenvector elements share the same property.

The expressions for the DAE eigenvectors given above are computationally
efficient. The additional operations required to obtain the algebraic parts of
the eigenvectors are not demanding. Routines that compute only selected
eigenvalues and their eigenvectors are of course even more efficient. They
are, however, less accessible and are for example not included in Matlab
version 4.2. Matlab can, on the other hand, offer direct computation of the
DAE eigenvectors, which may seem attractive. Entering the matrices A and
E then gives the right eigenvectors, while use of their transpose yields the
left eigenvectors since

ΨdaeA( )T = ΛΨdaeE( )T

A TΨdae
T = EΨdae

T Λ

The Matlab routine returns a diagonal matrix with eigenvalues and a matrix
with right eigenvectors. The problem is that these matrices have the same
size as A and E, which means that a number of the eigenvectors correspond
to algebraic dynamics with infinite eigenvalues. The computation of these
infinite eigenvalues and the associated eigenvectors increase the
computation time considerably. Again the problem with scaling of the
eigenvectors arises. To guarantee consistency the DAE eigenvectors should
all be computed from Φi and Ψi (for which ΨiΦi =1) by using (2.14) and
(2.15).

When the DAE system is transformed into modal coordinates, the input,
output and modal matrices differ as compared to the ODE case. However
the resulting modal controllability matrix ΨdaeBdae  and the modal
observability matrix CdaeΦdae are the same.

The control law u=Ky  in a SISO DAE system changes the system
dynamics: Adae is replaced by Adae+BdaeKCdae. According to [Smed 1993]
the sensitivity of mode i to a small gain K is,

∂λ i

∂K
=

Ψdaei
∂

∂K
A dae + BdaeKCdae( )Φdaei − λ iΨdaei

∂E

∂K
Φdaei

ΨdaeiEΦdaei

where Ψdaei and Φdaei are the left and right DAE eigenvectors
corresponding to mode i. If E  contains only zeroes and ones, and if
ΨdaeiEΦdaei =1 the expression is substantially simplified,
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∂λ i

∂K
= ΨdaeiBdaeCdaeΦdaei (2.16)

Note that if each one of the input and output matrices contain only a single
nonzero element being one, the eigenvalue sensitivity is obtained by simply
multiplying one element of each of the right and left eigenvectors.

Model Reduction

As in all dynamic modelling, the purpose of the model should determine
the complexity or resolution of the model. Highly simplified models are
well suited for analytical treatment and intuitive understanding. The results
obtained are then general and can easily be related to the included
parameters, but their validity for the original system is limited. A model
with full complexity would be more faithful but is in general too involved
to be practically useful. In fact the term full complexity of a power system
model is never used. Any power system model is instead a compromise
between a good representation and a size that can be handled both
regarding computational effort, setting of parameters and interpretation of
results. An important technique to simplify a model, while maintaining its
validity for a particular purpose is to remove dynamic states through model
reduction. This is particularly useful in association with control design
techniques such as H∞ and L Q G [Maciejowski 1989], that produce
controllers whose complexity is related to that of the controlled system. To
demonstrate the relationships between different model types, three
examples of model reduction based on modal analysis are given here,

• time scale decomposition;
• modal equivalencing;
• transfer function residues.

If the network dynamics are included in a model for small disturbance
stability analysis, they will show up as eigenvalues that are considerably
faster than the electro-mechanical modes. Through time scale
decomposition and a proper choice of coordinates the states may be
partitioned in slow and fast ones, leading to,

I 0
0 ε







d

dt
∆xslow
∆xfast







= A
∆xslow
∆xfast







(2.17)

which can be thought of as the result of improving the condition number of
the system matrix. The elements of the diagonal matrix ε can be thought of
as time constants and are small. By setting ε to zero (2.17) turns into the
differential-algebraic equation (2.3). The fast states now algebraically
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depend on the slow ones, and their eigenvalues and eigenvectors are
eliminated. The reduction ignores the influence of ε on the eigenvalues of
the slow states. In [Sauer et al 1987] expressions are given for how to take
ε into account, so that the slow eigenvalues can be kept arbitrarily close to
their original positions.

Although having reduced the model to contain only electro-mechanical
modes, the number of states may still be too large. Then the eigenvectors
can be used to formulate a simpler model that focuses only on the modes of
interest, while omitting others. In damping studies the slowest inter-area
mode is often of primary concern as it usually exhibits low damping. Its
right eigenvector typically reveals that the system is split into two groups
of machines, that swing against each other. Using this knowledge, the
system can be reduced by modelling each machine group as an equivalent
machine. The simplified system has two electro-mechanical modes; the
inter-area mode and the rigid body mode, where the machine angles move
in the same direction. Aggregating machines into groups that are modelled
as equivalent machines is called dynamic equivalencing. Coherent modal
equivalencing requires the machines within a group to swing exactly in
phase with each other. [Ramaswamy et al 1995] briefly mentions
coherence in order to explain synchronic modal equivalencing, where
machines that swing in proportion to one or more reference machines may
be algebraically represented.

The opposite of the inter-area mode is the local mode, in which a single
machine or machine group swings against a large system. This practically
does not excite the rigid body mode. A suitable model is then the single
machine infinite bus system, where the large system is reduced into an
infinite bus with constant frequency. This single mode system is the most
widely used model for electro-mechanical power system dynamics and is
one of the test systems of Section 2.3. As the structure is simple, analytical
treatment is possible which will be made use of in the following. A
nonlinear model can also be handled, which is shown in Chapter 5.

The equation for a transfer function of (2.6) requires all the eigenvalues of
the system to be included in all transfer functions. This is mostly
unnecessary, which is realized by expanding the transfer function in partial
fractions as,

Y s( )
U s( )

= G s( ) = Dode + R k

s − λkk =1

n

∑
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where Rk is the residue of the G(s) at the eigenvalue or pole λk. For a SISO
system it is determined from input, output and modal matrices,

R k = CodeΦkΨkBode

The close relationship to the modal representation is obvious, as Rk can be
said to quantify the participation of mode k in the dynamics as seen
between the input and the output. The order of G(s) may be reduced by
omitting terms of the sum. This is done by sorting them by descending
residues starting with the most dominant poles and truncating the series
when the residues are considered negligibly small. Routines for
determining the dominant pole spectrum are found in [Martins et al 1996].

2.3 Test Systems

Three test systems have been used. First a single mode system was chosen
as it can be treated analytically. It can also demonstrate the influence of
different control laws on one particular mode. Second a three machine
system was selected as the least complex multi-mode system. It has a
meshed network and thus represents the simplest nontrivial topology and is
a complement to the longitudinal structure of the single mode system. The
three machine system requires numerical computations as does the third
test system which has twenty-three machines. It is a CIGRÉ model of the
Swedish national power system, developed for comparing transient
stability and voltage collapse performance of different simulators. Whereas
the two first test systems are chosen for being manageable, the CIGRÉ
model represents a realistic network topology with more detailed
component models.

While the single mode system is manually modelled, the two others are
modelled using EUROSTAG as described in Section 2.1. The resulting
matrices of the DAE description contain the DAE matrix equations of the
individual components and their controllers. For a system with k
components, the matrices have the following structure:

  

E1
O

Ek
0

















d

dt

x1
M

xk
v

















=

A1 B1
O M

A k Bk
C1 L Ck Ybus

















x1
M

xk
v

















While block matrices on the diagonal represent internal dynamics, the off-
diagonal blocks specify the connections to other components, which are
realised mainly through the network. The network and the passive loads are
represented by algebraic equations for the current injection at each bus
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using real and imaginary parts of the bus voltages v as algebraic variables.
The lower right block matrix describing the network, equals the differential
bus admittance matrix, Ybus.

Single Machine Infinite Bus System

The single mode system is a standard example, found in textbooks like
[Anderson and Fouad 1993] and [Kundur 1994]. It includes a synchronous
generator connected to an infinite bus through a transformer and a
transmission line circuit, illustrated by Fig. 2.4.

E’∠ δ V∠ θ V∞∠ 0

Generator

Transformer
Transmission line

Infinite bus
Load

0123

Fig. 2.4 One line diagram of single machine system.

For simplicity, all resistances are neglected and the generator is modelled
as a constant voltage E' with phase angle δ behind the transient reactance
X'd. The system can be described by two differential equations for the
machine and by algebraic equations for the power balance at the load bus,

2H

ωR

dω
dt

= Pm − Pg

dδ
dt

= ω − ωR

Pload = Pg + Ptl

Qload = Qg + Qtl

(2.18)

H is the inertia constant of the machine in MWs/MVA and ωR the nominal
value of its electrical angular frequency ω in rad/s. Pm denotes the constant
mechanical power with which the turbine drives the generator. Pg+jQg and
Ptl+jQtl represent active and reactive power coming from the transformer
and the transmission line into the load bus, where the load is Pload+jQload.
The internal angle δ and the time derivative ω are given in rad and rad/s
respectively. All other variables are normalized using MVA rating and rated
bus voltage of the machine as base values.

Let Xt  and Xtl be the series reactances of the transformer and the
transmission line. If Y'd and Ytl represent 1/(X'd+Xt) and 1/Xtl respectively,
the power entering the load bus can be expressed as,
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Pg = Yd
' E' V sin δ − θ( )

Qg = Yd
' E' V cos δ − θ( ) − Yd

' V 2

Ptl = −YtlVV ∞ sin θ

Qtl = YtlVV ∞ cos θ − YtlV
2

(2.19)

Introduce the state vector [ω δ θ V]T and linearize. Assuming negligible
variation in voltage magnitude the linearization gives,

M 0 0
0 1 0
0 0 0
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d

dt

∆ω
∆δ
∆θ













=
0 Kδδ Kδθ
1 0 0
0 Kθδ Kθθ













∆ω
∆δ
∆θ













+
0
0
−1












Pload (2.20)

with M and the synchronizing coefficients K defined as,

M = 2H

ωR

Kδδ = −Y ' d E' V cos δ − θ( ) = −Kδθ = −Kθδ

Kθθ = −Y ' d E' V cos δ − θ( ) − YtlVV ∞ cosθ

(2.21)

System data for the single machine system are taken from the field test in
Chapter 6 and are given in Appendix A.

The model of (2.20) can be generalized to the multi-machine case with an
arbitrary network. The generator buses are then numbered 1..n, and the
load buses are numbered n+1..n+m. The state vector is then expanded as,
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∆δ
∆θ
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
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









so that variables without subscript now denote vectors rather than scalars.
The matrix equation is practically unaltered,
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Pload (2.22)

where M is a diagonal matrix with 2H/ωR of each generator on the diagonal
and Pload is an m-dimensional vector with the active power injection at
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each load bus. An element in the matrices of synchronizing coefficients,
Kδθ or Kθδ is now defined as,

Kδθ ,ij = Yi, j+nEi
' Vj+n cos δi − θ j+n( ) = Kθδ , ji (2.23a)

where Yij is element (i,j) of the bus admittance matrix, that specifies the
admittance between buses i and j, that may be either internal generator
buses or load buses. Similarly element (i,j) of Kδδ and Kθθ are defined as,

Kδδ ,ij =

YijEi
' Ej

' cos δi − δ j( ) i ≠ j

− Kδδ ,ij
j=1
j≠i

n

∑ i = j
 
 










(2.23b)

K θθ ,ij =

Y i +n , j+nVi +nV j+n cos θi +n − θ j+n( ) i ≠ j

− K θθ ,ij
j=1
j≠i

m

∑ i = j
 
 










(2.23c)

Note that Kδθ is the transpose of Kθδ and that both Kδδ and Kθθ are
symmetric. By applying (2.4) the load buses may be eliminated. This gives
the ODE version of the system found in many textbooks.

Three Machine System

A three machine system has two oscillatory electro-mechanical modes and
thus forms the first step towards a general multi-machine case. The nine
bus system of [Anderson and Fouad 1993] is selected for having the
generic meshed network with one mesh, see Fig. 2.5.

This system, also known as the WSCC 9 system, is commonly used in
other studies such as for voltage stability [Arnborg 1997], and controller
design [Chen et al 1995]. As both mode and network structure are
uncomplicated, the results can easily be coupled to them. This makes the
three machine system the basis for the development of control laws that can
be applied in a general case.
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N8

N9 N3N2 N7

N5 N6

N1

N4

S3S2

H1

100+j35

125+j50 90+j30

71.6+j27

163.0+j6.7 85.0-j10.9

Fig. 2.5 Three machine system with generation and load in MVA.

A third order synchronous generator model is selected as this is the
simplest machine model of EUROSTAG. It is sometimes referred to as the
one-axis model, as it includes the direct axis but not the quadrature axis
circuit. Damper windings are not included, and although saturation can be
represented, this option is not used. The magnetization is controlled by a
proportional AVR measuring terminal voltage. The mechanical input
power is kept constant. One generator with AVR is described by eight state
variables in the linearized DAE system model.

x gen = λ f V ref E FD Tm ω δ I q I d[ ]T

The field flux linkage λ f, the mechanical angular velocity ω and the
machine angle δ are the dynamic states. (The machine angle is called teta
in EUROSTAG.) AVR setpoint Vref, field voltage EFD, mechanical torque
Tm, stator current along the d and q axis Id and Iq are algebraic states. The
structure of the DAE model of a generator with AVR and constant
mechanical power is described by (2.24), where a dot denotes a non-zero
matrix element. Vbusg is the voltage at the generator terminals.
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dt
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(2.24)

Both transformers and lines are modelled as series impedances but lines
additionally have shunt admittances at each end. Loads are represented by
impedances. Transformers, lines and loads can be modelled by expressing
the current injections at each bus in the bus voltages. As the injections sum
up to zero at each bus, the linearized network can be described as a matrix
formulation of Kirchhoff's current law:

0 = Igen − YbusVbus (2.25)

where Ybus is the differential bus admittance matrix and Igen holds the
current injections of the generators.

In EUROSTAG, real and imaginary parts of the voltage at each bus enter
the state vector as separate elements as in Vbusg of (2.24). The full state
vector holds the states of the controlled machines followed by the voltage
variables. It thus contains 9 dynamic states and 33 algebraic states (5 per
machine and 2 per network bus):

  
xT = xgen1

T xgen2
T xgen3

T Vbus1
T L Vbus9

T[ ] (2.26)

Using the state vector of (2.26), the full DAE system description is
obtained by merging the descriptions of the network and all components,
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Note that while Agen and Egen are unaltered from (2.24), Bgen is now
related to the voltages at all buses, and Cgen represent the current injections
of the machines. Referring to Fig. 2.5 for notation, a sparsity plot of the
system matrix A of (2.27) is shown in Fig. 2.6.

H1      

S2      

S3      

N1      

N2      

N3      

N4      

N5      

N6      

N7      

N8      

N9      

Fig. 2.6 Sparsity plot of the DAE system matrix A: dots represent nonzero elements
and block matrices associated with the individual machines and buses are
indicated.

Data of lines, transformers and machines are taken from [Anderson and
Fouad 1993], while models of AVR and governor are described in
Appendix B. The normal load situation in Fig. 2.5 from [Anderson and
Fouad 1993] gives an operating point with one electro-mechanical mode at
1.3 Hz and one at 1.8 Hz. The machine angle elements of the
corresponding right eigenvectors are given in Table 2.1.

Machine 1.3 Hz mode 1.8 Hz mode

H1 0.277e-j4° 0.029e-j111°

S2 0.818ej179° 0.282e-j127°

S3 0.495e-j179° 0.948ej62°

Table 2.1 Machine angle elements of the right eigenvectors corresponding to the
oscillatory electro-mechanical modes.
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If the arguments of the eigenvector elements are concentrated around two
values that are separated by 180°, one of them may be used as reference
and the angle information may be described as in-phase or anti-phase. This
can be illustrated by a bar graph as in Fig. 2.7 and is known as the mode
shape. It shows that all machines are active in the 1.3 Hz mode, while
mainly S2 and S3 swing against each other during the 1.8 Hz mode.

−0.5 0 0.5

H1      

S2      

S3      

1.3 Hz mode

−0.5 0 0.5

H1      

S2      

S3      

1.8 Hz mode

Fig. 2.7 Mode shape of the 1.3 Hz mode (left) and the 1.8 Hz mode (right).

Twenty-three Machine System

The twenty-three machine system is the Nordic32 or the Swedish test
system of the report Long Term Dynamics Phase II by CIGRÉ TF 38-02-08
[CIGRÉ 1995]. The report compares long term dynamics of five test
systems using ten different simulation tools. Although being fictitious the
Swedish test system has dynamic properties similar to the Swedish and
Nordic power system. It is included here to illustrate what implications the
studied damping schemes would have on a realistic system.

As can be seen in Fig. 2.8, the system is divided into three Swedish areas
denoted Southwest, Central, North and and a foreign part named External.
The external and northern regions are characterized by a large amount of
hydro power generation, while the other two hold thermal power plants.
The External and the Southwest areas are essentially self-supporting in
contrast to the Central region, which imports half its power consumption
from North.

The nineteen 400 kV transmission system buses in Fig. 2.8 are given four-
digit node numbers starting with 4. Similarly the two 220 kV buses and the
eleven 130 kV buses of the subtransmission system have numbers starting
with 2 and 1 respectively. Nine pure load buses at 130 kV have two-digit
numbers and are connected to the 400 kV network via transformers with
tap changers. Out of the totally forty-one buses, twenty are generator buses,
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holding twenty-three synchronous generators. Transformers are shown as
lines that connect different voltage levels.

4072 4071 4011

4012

1011101310141012

4022 4021
10221021

403120312032 4032

4042

4041

4044 4043

4046

4061

1044

1041

1043

1045

1042

40454062

4063 4051

4047

61

62

63 51

47 46

42
41

43

Generation with/without load

No generation with/without load
External

North

North
Southwest Central

Fig. 2.8 Outline of the twenty-three machine system.
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The EUROSTAG model of the twenty-three machine system has the very
same structure as that of the three machine system. The main difference,
except for the number of components, is that more detailed subsystem
models are employed. This applies in particular for the machines and their
controls, but also for loads and transformers. Although the test system is
designed for simulations of transient stability and long term dynamics, the
detailed modelling makes it suitable also for small disturbance stability
analysis. The numerical data of the entire system is found in [CIGRÉ 1995]
while the modifications that are used here are outlined in Appendix C. The
model used in the following has 324 dynamic states and 221 algebraic
states giving a total size of the A matrix of 545x545 elements.

As the machine model should reproduce transient behaviour, the fifth order
model of EUROSTAG is chosen [EUROSTAG]. It includes damper
windings in both the d and q axis as well as saturation modelling. The
excitation system is modelled as a second order system. The AVR includes
a Power System Stabilizer (PSS) with output limited to ± 5% and limiters
for both stator and rotor currents. The current limits play a very important
role when the system is close to voltage collapse, but are not needed when
studying damping. While generators of thermal power plants operate with
constant mechanical power, the generators of hydro power plants are
equipped with governors and models of the water ways.

The machines can be divided into three groups: ten round rotor generators
in thermal power stations (4042, 4047_1, 4047_2, 4051_1, 4051_2, 4062,
4063_1, 4063_2, 1042, 1043), twelve salient pole generators in hydro
power stations (at buses 4011, 4012, 4021, 4031, 4071, 4072, 1012, 1013,
1014, 1021, 1022, 2032) and a salient pole synchronous compensator (at
bus 4041). The machines have different ratings, but in each group all use
the same set of parameters (in per unit of machine base) for the generator,
the PSS and the governor.

In the CIGRÉ model, distribution networks are modelled as loads with
voltage and frequency dependencies according to (2.28),
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The voltage dependence of loads is critical when studying voltage collapse
or damping by PSS or SVC, as these are voltage related phenomena. A
realistic improvement of the distribution systems modelling would be to
incorporate dynamic voltage dependence as in [Karlsson and Hill 1994].

Detailed transformer models with tap changer control are used for the nine
load transformers and for the four transformers connecting the 130 kV area
to nodes 4044 and 4045. The remaining four transformers, all in the area
North, have fixed ratios. Tap changer action and load dynamics are both
very important for the load restoration, that is an important cause of voltage
collapse. For small disturbance stability studies, however, neither is usually
considered. But as the tap changers are already included they are retained
for convenience.

The three scenarios proposed in [CIGRÉ 1995] are all designed to cause a
voltage collapse, similar to that of the Swedish black-out in 1983 [Kearsley
1987]. In all three cases a generation unit is tripped, in one case after the
tripping of the important transmission line between 4011 and 4021. The
resulting new load flow situation causes generator current limiters to act
and subsequently the tap changers operate to restore the voltage. As the
load increases faster than the voltage, a voltage collapse occurs.

Tripping of a generator is a large disturbance. A new scenario is therefore
required for small disturbance stability studies. [CIGRÉ 1995] suggests
two load flow cases characterized as peak load and high load. The high
load case for the intact network is used as base case. The damping
controller to be designed should manage different operating points.
Disconnecting a transmission line substantially changes the load flow. It
can also change the swing mode pattern of the generators, which is seen in
the eigenvectors of the linearized system. The double line between 4044
and 4045 is found to have this influence, and although unlikely its tripping
is not unrealistic.

In order to obtain a reasonable voltage profile for the fault case with line
4044-4045 out, a few changes are necessary. Generator buses were
previously modelled as PQ buses making all AVRs passive. This is
improved by instead using PV buses. The voltage setpoints are taken from
the base case, but are adjusted so that the reactive generation limits that are
unaltered, are not activated in either case.

All modes are well damped, which is mainly due to the fact that PSS units
with perfectly matching parameters are installed on all generators. To
worsen the situation, the PSSs of the generators at all thermal power plants
were disengaged. This is not unrealistic and reduces the damping of modes
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where machines in the Central and Southwest participate. This use of PSS
is the same in the base case and the fault case, where the line N4044-
N4045 is disconnected.

The control system design will aim at improving damping of the least
damped modes in the fault case and therefore the three modes of Table 2.2
have been chosen for closer study.

Mode Base case Fault case

1 -0.14±j3.38 -0.09±j3.09

2 -0.36±j5.74 -0.21±j4.47

3 -0.31±j4.62 -0.22±j4.64

Table 2.2 Eigenvalues of the selected modes in the base case and in the fault case.

Note that the fault substantially changes the frequency of Mode 2, which is
the reason for numbering the modes rather than naming them by their
frequency. The modes are instead identified by their mode shape shown in
Fig. 2.9a. The geographical shape of the mode is shown in the network
diagram of Fig. 2.9b, where the absence of the transmission line N4044-
N4045 in the fault case is apparent. Whereas Mode 1 has nearly identical
shape in both cases, Mode 2 and 3 are identified as follows: Mode 2 is an
oscillation between the machines on each side of the disconnected line, and
is therefore expected to change radically. Mode 3 is a swing mode between
two groups, where N4051 is close to the disconnected line and changes
side due to the fault.

It is evident that both frequency, damping and structure of the mode is
altered by the fault. As a damping system should be able to handle such
changes, the chosen fault is a suitable challenge.
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Fig. 2.9 a Mode shapes of the study modes for base case (left) and fault case (right).
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Base case: Mode 1 Base case: Mode 2 Base case: Mode 3

Fault case: Mode 1 Fault case: Mode 2 Fault case: Mode 3

Fig. 2.9 b Swing patterns of the study modes for the base case (upper graphs) and the
fault case (lower graphs). The two swing directions are illustrated by '*' and
'o' respectively. Machines with less than 10 % of the peak amplitude are not
included.

2.4 Mechanical Equivalents

To gain insight into the behaviour of complex systems, the existence of a
well understood analogy is often useful. Electromechanical dynamics of
power systems can for example be transformed into purely electrical or
mechanical systems. Mechanical equivalents are for example employed in
[Elgerd 1971] and [Kimbark 1948]. Animation of power system dynamics
using a mechanical equivalent is described in [Gronquist et al 1996]. The
models described in the following are used throughout the thesis to provide
a more intuitive insight into the power system dynamics.

Spring-Mass Model of an Inter-Area Mode

Fig. 2.10 shows a spring-mass model, that exhibits the dynamics of the
inter-area mode mentioned in Section 2.2.
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M1
F3

k1 k2

x1
x3

M2

x2
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Fig. 2.10 Spring-mass model of an inter-area mode.

The masses M1 and M2, with positions x1 and x2, symbolize the machine
groups that swing against each other. F1 and F2 is the constant mechanical
power input of each equivalent machine. Transmission lines are
represented by two springs with constants k1  and k2. A force F 3,
corresponding to controlled active power, acts on the node with position x3
between the springs. Force balances at positions x1, x2 and x3 give,

 

M1˙̇x1 = k1 x3 − x1( ) + F1

M2˙̇x2 = k2 x3 − x2( ) − F2

0 = k1 x1 − x3( ) + k2 x2 − x3( ) − F3

A DAE matrix model may now be formulated by introducing the states v1
and v2 as horizontal velocities of the two masses,
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v2
x1
x2
x3



















+

1 0 0
0 −1 0
0 0 0
0 0 0
0 0 −1



















F1
F2
F3













(2.29)

By creating block matrices as indicated by the lines above, the model
structure becomes apparent,

diag
M
I
0























d

dt

v
xd
xa













=
0 Kdd Kda
I 0 0
0 Kad Kaa













v
xd
xa













+
Kdu

0
Kau












F

This generalization is valid for any configuration of masses and springs.
Note that the same statement, but for a power system, was made for the
power system model of (2.22), that has the same structure. The agreement
between the electro-mechanical model and its mechanical equivalent is
thus demonstrated.
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The system of (2.29) has four eigenvalues,

λ1 = λ2
* = j

k1k2

k1 + k2

1
M1

+ 1
M2







λ3 = λ4 = 0

(2.30)

where the first two are oscillatory and form the equivalent to the electro-
mechanical inter-area mode, whereas the last two form a rigid body mode.
The right and left eigenvectors of the oscillatory mode are,

Φ1 = Φ2
* = λ1

M1

−λ1

M2

1

M1

−1

M2











T

Ψ1 = Ψ2
* = 1

λ1

−1

λ1
1 −1









κ

(2.31)

where

κ = M1M2

2 M1 + M2( )
is introduced so that Φ1Ψ1=1. The right and left eigenvectors of the rigid
body mode are,

Φ3 = −Φ4 = 0 0 1 1[ ]T

Ψ3 = −Ψ4 = 1
M2

1
M1

0 0










(2.32)

Φ3 and Φ4 describe a motion where the entire system, with masses and
springs, slide in either direction as a rigid body. This term is used in power
system contexts to describe a uniform motion of all synchronous machine
rotor angles. In a power system one of the zero eigenvalues moves away
from the origin if damping relative to fixed frequency is introduced. The
other is usually eliminated by appointing one bus as reference, to which all
angles are related. This reduces the length of the state vector by one
element.

Spring-Mass Model of a Local Mode

The mechanical equivalent of the single machine infinite bus system can be
obtained from the system above. M2 is then turned into a fixed reference –
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the infinite bus – by setting M2=∞ and fixing its position to zero. The rows
and columns corresponding to v2 and x2 can be removed together with the
states themselves as x3 is renamed to x2,

M1
1

0













d

dt

v1
x1
x2













=
0 −k1 k1
1 0 0
0 k1 − k1 + k2( )













v1
x1
x2













+
1 0
0 0
0 −1













F1
F2







(2.33)

Equation (2.33) describes the system of Fig. 2.10 and is equivalent to
(2.20), previously mentioned.

M1
F2

k1 k2

x1
x2

F1

Fig. 2.11 Spring-mass model of the single machine infinite bus system.

This system has one complex conjugate pair of eigenvalues,

λ1 = λ2
* = j

k1k2

k1 + k2

1
M1

which could have been obtained by setting M2 in λ1 and λ2 of the two-
mass system to infinity. The right and left eigenvectors of this mode are,

Φ1 = Φ2
* = λ1 1[ ]T

Ψ1 = Ψ2
* = 1

2λ1

1
2











Pendulum Equivalent to Local Mode

The spring-mass models above are naturally not the only mechanical
systems, that can be constructed as dynamic equivalents to power systems.
Fig. 2.12 shows the single machine system of 2.3 and a mechanical
pendulum equivalent that also exhibits visual similarities.
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E’∠ δ

V∠ θ

V∞∠ 0

P F
l1

l2

M

x1

x2

α2

α1

Fig. 2.12 Single machine system and a mechanical equivalent.

The pendulum is vertical and consists of a mass suspended in a massless,
but flexible string. The active load P of the power system is represented by
a force F acting on the string. The deflections x1 and x2 from the stationary
point correspond to the phase angles δ and θ. By assuming that x1 and x2
are small a linear model can be formulated. Let the force along the lower
and upper part of string be F1 and F2 respectively. Vertical force balances
at the mass center and the attack point of F yield (2.34), that applies for
small angles α1 and α2,

F1 cos α1 = Mg
F2 cos α2 = F1 cos α1

⇒ F1 ≈ F2 ≈ Mg (2.34)

Horizontal force balances at the same points give,.

M l1 ˙̇α1 + l2 ˙̇α2( ) = −F1 sin α1

F1 sin α1 = F2 sin α2 + F
(2.35)

F1 and F2 are eliminated and the equations are linearized, leading to

l1 ˙̇α1 + l2 ˙̇α2 = −gα1

1

M
F = g α1 − α2( ) (2.36)

α1 and α2 are now replaced by x1 and x2 through the transformation,
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x1 = l1α1 + l2α2
x2 = l2α2


⇔

α1 = 1
l1

x1 − x2( )

α1 − α2 = 1
l1

x1 − 1
l1

+ 1
l2







x2










By introducing v1 as the velocity of x1 the DAE system description is
complete,

1
1

0













d

dt

v1
x1
x2













=

0 − g

l1

g

l1
1 0 0

0
g

l1
−g

1
l1

+ 1
l2



























v1
x1
x2













+
0
0

− 1
M



















F (2.37)

The eigenvalues of this system are,

λ1 = λ2
* = j

g

l1 + l2

and the corresponding right and left eigenvectors are,

Φ1 = Φ2
* = λ1 1[ ]T

Ψ1 = Ψ2
* = 1

2λ1

1
2











It is evident that the pendulum as described by (2.37) is equivalent both to
the spring-mass model of (2.33) and to the single machine infinite bus
system of (2.20). It is therefore natural, that both eigenvalues and
eigenvectors look like those of the other local mode system.
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