
4
Feedback Signals

… in which three feedback  signals are selected for control of active power
and it is shown that the geographical variation of phase angle mode
observability agrees with that of active power mode controllability.

Feedback signals carry information while control signals carry energy. As
information is so much simpler to handle than energy, the freedom to
choose feedback signals for a damping system is in general considerable: a
variable that is not physically measurable may be estimated or synthesized
from one or more other available quantities. A variable that cannot be
conveniently measured at the desirable location can be remotely measured
and telemetered via some sort of communication link.

Three signals are proposed for control of active power:

• local bus frequency;
• frequency of the closest machine;
• estimated mode frequency.

The two first signals will be used in several dampers at different network
locations in Chapters 7 and 8, while the third one will only be used for
damping of a local mode with one damper as described in Chapters 5 and
6. All three signals have been used for damping with PSS (see paper and
discussion of [Larsen and Swann 1981]). To a certain extent they describe
the velocity of the machine rotors, which is natural, as it is their motion
that should be damped.

General requirements on feedback signals for damping are discussed in
Section 4.1, and expressions for their mode observability are given in
Section 4.2. The geographical variation of mode observability for bus
frequency is computed for the test systems in Section 4.3. It is analytically
shown that for each mode the optimum place to measure bus frequency at
is where active power has the best effect on damping. This makes local
feedback preferable, which is advantageous in many aspects. The meaning
of the closest machine is outlined in Section 4.4 while estimated mode
frequency is treated in Section 4.5. Section 4.6 concludes the results.
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4.1 Feedback Signal Selection

A feedback signal for control of a certain actuator to damp a power system
should fulfil a number of requirements:

• realistic sensor and signal processing needs;
• limited demands on communication bandwidth and delay;
• adequate phase and amplitude of the mode observability;
• characteristics insensitive to change of operating point or network

topology.

Whereas the first three issues are fairly straightforward to check, the last
one is difficult but very important. In general, a damping system is aimed
at a set of modes that may have different phase characteristics. The fact that
the frequencies of these modes may lie very close to each other, and can
shift as the operating point or the network state changes makes the design
of a suitable phase compensation network difficult. Insensitivity to this
change in system parameters is often referred to as robustness.

Design of robust controllers typically requires extensive numerical
investigations. These may use repeated linearization [Jones 1996] of an
ordinary model, or methods that can handle uncertainty such as H∞ or µ
design techniques [Maciejowski 1989]. Instead of using these numerical
alternatives the control laws suggested in the following will be based on
structural knowledge about the physical behaviour of the system. This
method is less straightforward, but yields a controller whose robustness is
related to the validity of a physical law rather than to numerical properties
of the system. The required structural knowledge is obtained from the
mechanical equivalents of Section 2.4. These are well prepared as their
force input correspond to controlled active power input, which is the type
of actuator chosen in Chapter 3.

4.2 Computing Mode Observability

To evaluate a feedback signal, its ability to detect a certain mode is of
primary interest. As a mode has a geographical extent and the measurement
of the signal can be done at different places, the geographical variation of
mode observability should be studied. From this the suitability of the signal
and an appropriate location to measure it can be concluded.

Mode observability is closely related to the right eigenvectors of a system.
This gives the same restrictions on valid comparisons that applied to mode
controllability: Only the mode controllability of variables that describe the
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same physical quantity and have the same scaling can be compared.
Measures for different modes can not be compared to each other.

A right eigenvector and its eigenvalue contain all information about how
all the elements of the state vector move during a mode motion. As stated
by (2.9), the eigenvalue gives the frequency and damping, while the
eigenvector elements determine the amplitude and phase shift of the more
or less damped sinusoidal motion of each state. In a DAE model both
dynamic states, algebraic variables and outputs are feedback signal
candidates. Fig. 2.3 indicates that the expressions for their mode
observability are different. The mode motion of the dynamic states xd are
given directly by the right eigenvectors. These are found as columns in the
right modal matrix of the ODE system,

Φ

or equivalently by the dynamic part of the right DAE system eigenvectors
obtained from (2.12),

Φdae,d

The influence of the mode motion on the algebraic states xa in a DAE
model is,

−A 22
−1A 21Φ (4.1)

while the coupling from mode to explicit outputs is governed by,

C1 − C2A 22
−1A 21( )Φ (4.2)

where the parenthesized expression is equal to Code. The output matrices
C 1 and C2 may be formed for the observability analysis instead of
including the outputs in the model. This procedure limits the model
complexity, while still offering the requested information. As an example,
phase angle at a network bus does not appear as a variable in the DAE
model exported by the simulation program EUROSTAG. Instead it can be
determined from the bus voltage elements as,

∆θ = 1

V 2 −v I v R[ ] ∆v R
∆v I







(4.3)

where V is bus voltage magnitude, vR+jvI is the linearization point and ∆
denotes deviation from it.
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4.3 Local Bus Frequency

The generic damping component in a spring-mass model is a viscous
damper. When moving one of its ends relative to the other, the damper
develops a counteracting force proportional to the velocity of the motion.
Introducing a damper as in Fig. 4.1, would intuitively damp an oscillating
motion of the masses as the swing energy is dissipated in the damper.

M1

d

k1 k2

x1
x3

M2

x2

F1 F2

Fig. 4.1 Viscous damper introduced in the spring-mass model of an inter-area mode.

The arrangement gives a force F3 that is d3 times the velocity of its point of
attack. In a power system this is equivalent to active power proportional to
the local bus frequency deviation. This control law has been proposed for
damping controllers in HVDC links by for example [Smed 1993]. A
difference here is that it will be employed simultaneously at different
locations in the network.

Bus frequency is obtained by filtering measurements of the phase angle.
Taking the time derivative of a sinusoidal signal gives a phase shift of 90°
and adds a factor equal to the angular velocity. The mode observability for
the bus frequency thus differs from that of the phase angle by a factor equal
to j times the eigenfrequency of the mode, which is the imaginary part of
the corresponding eigenvalue. For more details on techniques to determine
bus frequency, see [Phadke et al 1983].

Mode Observability for Analytical Models

The mode observability of x3 in the spring-mass model (2.29) of an inter-
area mode can be obtained from the right eigenvector in (2.31) by using
(4.1),
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−A 22
−1A 21Φ1 = 1

k 1 + k 2
0 0 k 1 k 2[ ] λ1

M1

−λ1

M 2

1
M1

−1
M 2











T

=

k 1

M1
− k 2

M 2

k 1 + k 2

(4.4)

Clearly, the observability is large close to the masses, and zero at a point
between them, which could be called a swing node. The mode observability
in x3 and the mode controllability of the force F3 as given by (3.5) thus
exhibit exactly the same dependence on k1 and k2.

The mode observability of x2 in the pendulum in Fig. 2.12 is,

−A 22
−1A 21Φ1 = l 2

l1 + l 2

Performing the same computations for the spring-mass model of (2.33) and
the power system of (2.20) yield the following expressions for the mode
observability of x2

k1

k1 + k2

and of θ ,

−Kθθ
−1Kθδ = −Kδθ

T Kθθ
−1

For all three systems, the mode observability of the phase angle or its
equivalent increases as the measurement point is moved closer to the
swinging mass. The geographical variation of this mode observability is
thus the same as that of the mode controllability measures of active power
or force derived in Section 3.3. This property constitutes the type of highly
desirable structural information mentioned in Section 4.1. It can be proven
that the agreement applies for a multi-machine power system with a
general network.

Depart from the description of (2.22) and omit the ∆ notations. Eliminating
θ gives the ODE formulation of the system,

ẋ = Ax + Bu
y = Cx + Du{

with
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x = ω
δ






;  u = Pload ;  y = θ ;  

A = 0 M −1K
I 0






;      B = M −1K δθK θθ

−1

0





;

C = 0 −K θθ
−1K θδ[ ];D = K θθ

−1[ ]
where

K = Kδδ − KδθKθθ
−1Kθδ

Due to the total lack of damping, the eigenvalues of this system are purely
imaginary. Use the state transformation as in the proof of eigenvector
similarity in [Eliasson 1990],

x̃ = M̃1/2x = M1/2 0
0 M1/2






x;

This yields the new system matrices,

Ã = 0 M−1/2KM −1/2

I 0





;    B̃ = M−1/2KδθKθθ

−1

0





;

C̃ = 0 −Kθθ
−1Kθδ M−1/2[ ];D = Kθθ

−1[ ]
Partition the right and left eigenvectors Φi and Ψi of the eigenvalue λi into
angular velocity and angle parts,

Φi = Φiω
Φiδ






;  Ψi = Ψiω Ψiδ[ ]

Entering this into (2.7) gives,

Φiω = λ iΦiδ

0 = M−1/2KM −1/2 + λ i
2I( )Φiδ

(4.5)

Assume that Φiδ is real. This is possible since the parenthesized expression
is real. Similar expressions for the left eigenvectors are based on (2.8),

Ψiδ = λ i Ψiω

0 = Ψiω M −1/2KM −1/2 + λ i
2I( ) (4.6)
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As all matrices within the parenthesis of (4.5) and (4.6) are symmetric it
can be concluded that,

Ψiω = ρiξiΦiδ
T (4.7)

where ρi is a positive real scalar and ξi is a complex scalar that are chosen
so that Ψ iΦi=1 for all nonzero eigenvalues. Here it is sufficient to
determine ξi so that the argument of ΨiΦi is zero. Using (4.5)-(4.7) gives,

Ψiω Ψiδ[ ] Φiω
Φiδ







= Ψiω λ iΨiω[ ] λ iΦiδ
Φiδ







= ρiξi Φiδ
T λ iΦiδ

T[ ] λ iΦiδ
Φiδ







= 2ρiξiλ iΦiδ
T Φiδ

It is evident that ξi should have the same argument as the inverse of λi and
therefore ξi = λ i

−1 will be used in the following. Both left and right
eigenvectors can now be expressed in terms of Φiδ, λi and ρi.

The observability of mode i in the phase angles θ at the load buses is then
given by,

C̃Φi = −Kθθ
−1Kθδ M−1/2Φiδ

Similarly the active power controllability of mode i at the load buses is ,

ΨiB̃ = ΨiωM−1/2KδθKθθ
−1 = λ i

−1ρiΦiδ
T M−1/2KδθKθθ

−1

Taking the transpose of this and using (4.7) together with the properties of
Kθθ, Kδθ and Kθδ yields,

ΨiB̃( )T
= ρiλ i

−1Kθθ
−1Kθδ M−1/2Φiδ = −ρiλ i

−1C̃Φi (4.8)

For each mode and at all load buses the mode controllability of active
power and the mode observability of the phase angle are thus proved to be
proportional. This property does not depend on the choice of coordinates,
and therefore applies also to the original coordinates. It is however
important to realize that the result is only guaranteed to apply as long as the
used model is valid.

For each mode, the measurement signal best reflecting the mode is thus
available where the actuator is most efficient. The resulting feedback is
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therefore local and eliminates long distance communication with its
associated problems.

Let active power injection at a bus be controlled as a gain K times the local
bus frequency obtained as the time derivative of the phase angle. Taking
the time derivative of a sinusoidal signal adds a phase shift of 90° and
multiplies the signal by its angular frequency. For mode i the resulting
control law at bus k is,

Pk = Kλ iθk

The eigenvalue sensitivity to K is obtained by inserting (4.8) into (2.11)
and including λi of the controller,

∂λ i

∂K
= ψ iB̃λ iC̃Φi = −ρi C̃Φi( )T

C̃Φi (4.9)

Since ρi is real and positive, the sensitivity of (4.9) is real and negative. At
least for small gains, active power controlled by local bus frequency will
therefore add damping to all modes simultaneously – irrespective of where
in the system such a damper is installed.

The same agreement between the magnitude of mode controllability and
mode observability but for reactive power and voltage magnitude is
mentioned in [Smed and Andersson 1993]. Implicitly it forms the basis for
the SVC control law in [Gronquist et al 1995], where the SVC output is
controlled in proportion to the time derivative of the local bus voltage
magnitude. By the use of energy function analysis it is shown that this local
feedback improves damping regardless of where in the system the
equipment is located. The close relationship to the control law suggested
above is apparent. By inserting this in the energy function used in
[Gronquist et al 1995], the same beneficial effect on damping can probably
be shown to apply for active power controlled by local bus frequency. If
this is the case the controlled active power need not vary symmetrically
around zero, but can be limited for example to zero from above or below.
Such a proof, which is carried out for a local mode system in Chapter 5,
would verify the assumption in Section 3.1, that temporary disconnection
of a load can be used to improve damping.

Mode Observability for Numerical Models

The analytical results above are based on highly simplified power system
models. Their validity in a more realistic system is therefore not evident,
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but can be examined by studying the test systems with three and twenty-
three machines respectively.

The three-machine model includes line resistance and generator flux
dynamics. This makes analytical treatment impractical and instead the
phase angle mode observability in the network is determined numerically.
For the load situation in question, the imaginary part of the voltage is small
and the voltage magnitude is very close to one at all buses. This simplifies
(4.3) substantially so that the phase angle mode observability can be
obtained directly from the ∆vI elements of the right eigenvector
corresponding to the electro-mechanical modes. This is quite similar to the
procedure for determining active power controllability for the same system
in Section 3.3. The complex nature of the observability measure is treated
in the same way: by projecting the points in the complex plane on a line
obtained as a least square fit to the points of the machine angle elements.
Fig. 4.2 shows the line and the complex phase angle mode observability of
all network buses. As a complement, the complex values of phase angle
mode observability for the load buses are given in Table 4.1.

Bus 1.3 Hz mode 1.8 Hz mode

N5 0.152e-j170° 0.028ej100°

N6 0.130e-j169° 0.095ej76°

N8 0.332e-j175° 0.086ej83°

Table 4.1 Complex phase angle mode observability at the load buses of the three
machine system.
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Fig. 4.2 Complex phase angle mode observability of the three machine system for
the 1.3 Hz mode (left) and the 1.8 Hz mode (right) as compared to the line
based on machine angle mode observability.
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As the deviation from the line is small in both cases, substantial
information is not lost through the projection. The geographical variation in
the network of mode observability can now be illustrated using the same
technique as in Fig. 3.3. Thinking in terms of bending modes of flexible
mechanical structures is even more motivated here, as observability and
mode shape both are extracted from the right eigenvectors. The result in
Fig. 4.3 shows great agreement with the active power mode controllability
in Fig. 3.3 and the interpretations are the same.
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Fig. 4.3 Phase angle mode observability of the three machine system for the 1.3 Hz
mode (left) and the 1.8 Hz mode (right).

The twenty-three machine system model is even less simplified than that
with three machines. Important differences are damper windings, nonlinear
loads and PSSs. The phase angle mode observability is obtained in much
the same way as for the three machine system. Due to the high loading
situation however, (4.3) needs to be employed and the resulting complex
values for the load buses are given in Table 4.2. These numbers are
distributed in the complex plane as in Fig. 4.4 for the selected modes in the
fault case.
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Bus Mode 1 Mode 2 Mode 3

N1011 0.027ej144° 0.006ej170° 0.002ej72°

N1012 0.029ej145° 0.008ej167° 0.003e-j6°

N1013 0.032ej148° 0.009ej167° 0.005e-j8°

N1022 0.015ej132° 0.017e-j27° 0.036ej137°

N1041 0.127e-j5° 0.071ej166° 0.036ej127°

N1042 0.101e-j5° 0.016e-j171° 0.176ej139°

N1043 0.097e-j4° 0.022ej175° 0.082ej138°

N1044 0.058e-j1° 0.034e-j27° 0.125ej141°

N1045 0.165e-j6° 0.146ej164° 0.050e-j21°

N2031 0.016ej19° 0.040e-j24° 0.079ej140°

N2032 0.005ej85° 0.054e-j24° 0.093ej138°

N4071 0.038ej144° 0.042ej158° 0.057e-j41°

N4072 0.044ej144° 0.063ej158° 0.091e-j42°

N41 0.053ej0° 0.040e-j24° 0.076ej143°

N42 0.041e-j1° 0.050e-j24° 0.137ej141°

N43 0.048ej0° 0.052e-j24° 0.151ej141°

N46 0.048ej0° 0.057e-j24° 0.165ej141°

N47 0.043ej0° 0.068e-j23° 0.186ej141°

N51 0.190e-j6° 0.223ej163° 0.099e-j25°

N61 0.113e-j5° 0.037e-j24° 0.019e-j65°

N62 0.135e-j6° 0.038e-j24° 0.059e-j50°

N63 0.143e-j6° 0.062e-j21° 0.083e-j50°

Table 4.2 Complex phase angle mode observability at the load buses of the twenty-
three machine system.
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Fig. 4.4 Complex phase angle mode observability of the twenty-three machine
system in the fault case for Mode 1 (left), Mode 2 (middle) and Mode 3
(right) as compared to the lines based on machine angle mode observability.

Again, the points are projected onto a line with a direction equal to the
mean direction of the machine angle observability of all generators. The
geographical variation can finally be visualized along with the network
topology as in Fig. 4.5 for the three modes.
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Fig. 4.5 Phase angle mode observability of the twenty-three machine system in the
fault case for Mode 1 (top), Mode 2 (middle) and Mode 3 (bottom).
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Fig. 4.5 is very similar to the geographical variation of the active power
controllability in Fig. 3.5, and differences can be found mainly in
magnitude. More importantly, the sign is different at the buses close to
N4051 for Mode 3 in the fault case. A screening of all modes shows that
this is the only significant exception from the rule that the geographical
variation of active power mode controllability and phase angle mode
observability are, if not identical, then at least very similar.

If local feedback from bus frequency to active power is introduced in the
area close to bus N4051, the eigenvalue sensitivity of Mode 3 to the gain
will differ from that predicted by (4.9) by 180°. Increasing the gain from
zero to a small value will thus start to move the eigenvalues of Mode 3 to
the right. As with all sensitivity analysis, nothing can be said about the
continued locus of the eigenvalues. This is better treated with root locus
analysis, which will be applied in Chapter 7.

4.4 Closest Machine Frequency

The damping system should damp the motions of the oscillating masses.
Measuring their velocity is then an obvious and more direct alternative to
measuring velocity at the actuator location. On the other hand these signals,
corresponding to rotor angular velocity of power system generators, need
to be telemetered. In a large power system measurements would have to be
sent from all machines to all actuators. To keep down communication
requirements, this is reduced to using only the rotor angular velocity or
frequency of the closest machine. The same choice is suggested in [Stanton
and Dykas 1989] and [Larsen and Hill 1993].

In the previous section it was shown that active power controlled by the
bus frequency anywhere in the system shifts all eigenvalues straight into
the left half plane as long as the gain is small. It seems reasonable to
assume that this property applies also if the measurement point is not
exactly the same as the actuator location, but sufficiently close to it. As
shown in Section 3.3 "close" is related to the mass-scaled electrical
distance rather than the geographical distance. For the spring-mass model
damping is obtained as long as the measurement point and the actuator
location are on the same side of the swing node. In a larger system the
same condition is expressed in terms of acceptable regions for the different
modes. If the mode controllability can be visualized by the 3D-views used
in Figs 3.3 and 3.5 these may be used define the regions. For an actuator
located in a region, feedback from the rotor angular velocity of any
machine in that region will damp the corresponding mode. As the regions
are different for different modes, the machine that lies in the same region as
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the actuator for all modes is accepted. Practically, it may be sufficient if
this is true only for the modes where the controllability of the actuator at
the given location is considerable.

Although being illustrative, the described method is not very exact. An
alternative is to numerically compute the eigenvalue sensitivity for
different combinations of machines and actuator locations. According to
(2.11) and (2.16) this is the product of active power mode controllability
and machine frequency mode observability. The complex values of active
power mode controllability at the load buses are given in Tables 3.1 and
3.2 for the two multi-machine test systems. The machine frequency mode
observability is obtained from the angular velocity elements of the right
DAE or ODE eigenvectors. The values for the three machine system are
given below in Table 4.3.

Machine 1.3 Hz mode 1.8 Hz mode

H1 2.230ej89° 0.330e-j16°

S2 6.583e-j88° 3.250e-j32°

S3 3.978e-j87° 10.91ej156°

Table 4.3 Complex mode observability for the angular velocity of the machines in the
three machine system.

Table 4.4 contains the corresponding complex numbers for all the
machines in the twenty-three machine system.
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Machine Mode 1 Mode 2 Mode 3

A1042 0.414ej80° 0.051e-j72° 1.609e-j132°

A1043 0.363ej78° 0.026e-j115° 0.801e-j132°

A4042 0.114ej74° 0.441ej67° 1.146e-j132°

A4047_1 0.136ej74° 0.618ej67° 1.676e-j131°

A4047_2 0.136ej74° 0.618ej67° 1.676e-j131°

A4051_1 0.832ej81° 1.765e-j110° 0.901ej62°

A4051_2 0.850ej80° 1.836e-j112° 0.926ej60°

A4062 0.565ej81° 0.408ej71° 0.527ej38°

A4063_1 0.621ej81° 0.668ej71° 0.821ej38°

A4063_2 0.621ej81° 0.668ej71° 0.821ej38°

B4011 0.113e-j118° 0.047e-j98° 0.029ej120°

B4012 0.121e-j118° 0.060e-j102° 0.047ej85°

B4021 0.004e-j64° 0.216ej65° 0.500e-j134°

B4031 0.025ej62° 0.256ej66° 0.487e-j133°

B4071 0.161e-j124° 0.292e-j113° 0.425ej48°

B4072 0.187e-j126° 0.445e-j114° 0.681ej47°

B1012 0.125e-j119° 0.059e-j102° 0.044ej80°

B1013 0.135e-j119° 0.065e-j103° 0.052ej81°

B1014 0.141e-j118° 0.072e-j105° 0.070ej76°

B1021 0.140e-j108° 0.151ej60° 0.274e-j146°

B1022 0.083e-j113° 0.100ej63° 0.202e-j137°

B2032 0.027e-j82° 0.373ej65° 0.651e-j135°

C4041 0.219ej90° 0.301ej64° 0.594e-j130°

Table 4.4 Complex mode observability for the angular velocity of the machines in the
twenty-three machine system.

Depending on which location that is chosen for the actuator, suitable
machines are chosen and the corresponding controllability and
observability are multiplied to give eigenvalue sensitivity.

4.5 Estimated Mode Frequency

The ultimate feedback signal for damping a mode would be the mode
coordinate itself. In principle this involves all the machine angles weighted
by the right eigenvector of the mode, which in most cases is unrealistic.
The (inter-area) mode involving two areas, however is structurally simple
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as each machine group can be represented as a large machine with a
representative machine angle as in Fig. 4.6.

E1∠δ 1 V∠ 0

Area 1

E2∠δ 2

Area 2

P1+jQ1 P2+jQ2

i1 i2

1 0 2

Fig. 4.6 Two area system.

The angles δ1 and δ2 are the mass weighted means of the individual
machine angles in the two groups. The angle δ=δ1-δ2 closely reflects the
inter-area mode. If the two areas are connected via a set of transmission
lines, δ may be synthesized from local measurements at the intermediate
bus as in [Larsen et al 1995] and [Lerch et al 1991]: introduce the complex
variables i1,  i2,  E1,  E2 and V  for the corresponding currents and voltages
in Fig. 4.6. The voltage at the fictitious internal bus 1 is then expressed as,

E1 = V + Z1i1

where Z1 is the impedance between bus 0 and bus 1. Keeping in mind that
V =V  is real, the angle δ1 is obtained as,

δ1 = tan−1 Im Z1i1( )
V + Re Z1i1( )








In [Lerch et al 1991] the term V has been omitted, probably by mistake. If
desired, the current measurement can be replaced by measured active and
reactive power,

i1 = P1 + jQ1

V

If furthermore the resistive part of the impedance is negligible so that
Z1=jX1, a more convenient expression is obtained,

δ1 = tan−1 P1

V 2 / X1 + Q1







(4.10)

δ2 is obtained from the same expressions by using subscript 2 instead of 1,
and the angle difference δ=δ1-δ2 is computed. The angular frequency of the
mode is finally obtained by lead filtering δ.
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In [Larsen et al 1995] a CSC damper in a two-area system uses the
estimated mode frequency as feedback signal. It is shown that for properly
selected Z1 and Z2  very large damping can be achieved, which means that
the feedback signal comes close to the mode coordinate itself. This is
remarkable for an estimate based on local measurements. [Larsen et al
1995] further reports that substantial damping can be obtained also for
other impedance values, which indicates a certain robustness of the
feedback signal.

Except for the work in [Larsen et al 1995] and of [Lerch et al 1991] based
on typical two-area systems, the concept of estimating the frequency at an
adjacent bus has also been successfully applied to PSS [Kundur 1994,
p. 1130]. This case corresponds to the above estimation of δ1 only. The
same technique can also be employed in larger systems, but little can be
said about the generic behaviour. While efficient in some cases, it cannot
capture mode behaviour in a general system with arbitrary structure of
network and modes. In this work estimated mode frequency will therefore
only be considered for application in the single mode system used in
Chapters 5 and 6.

4.6 Conclusions

The mode observability of bus frequency (or phase angle) is shown to be
closely related to the mode controllability of active power. For the simple
electro-mechanical power system model full agreement is demonstrated in
the geographical variations of these quantities. A direct consequence is that
local feedback is preferable since the best place to measure bus frequency
is at the bus with highest active power mode controllability. It is also
shown that increasing the gain of such a damper from zero will move the
eigenvalues of all modes towards better damping. The validity of these
results are formally restricted to zero gain. They have, on the other hand,
the attractive feature of not being limited to a certain topology or operating
point. This is verified by the similarities between the 3D-graphs of bus
frequency mode observability in Chapter 3 and active power mode
controllability in this chapter. The agreement is, however, not complete
which indicates that the model used for the proof is not an entirely valid
simplification of the twenty-three machine system at high load.


