
3
Control Signals

… in which active power mode controllability is determined from DAE
models of the test systems and a generalization of mass-scaled electrical
distance is presented.

Mode controllability is the ability of a control signal or an actuator to affect
a certain mode. In power system damper design, this has relevance for the
decisions regarding:

• actuator type,
• actuator location,
• actuator rating.

Section 3.1 treats the controlled active power load that is the chosen
actuator type.

In section 3.2, the methods for determining the active power mode
controllability in a DAE power system model are outlined. This is used to
find out where in the system a certain amount of controlled active power is
most useful. This is very different from the more common state
controllability study [Åström and Wittenmark 1990], which checks
whether all the dynamics of the system can theoretically be controlled from
the inputs or not.

As several actuators will be used, the geographical variation of the mode
controllability of active power is of central interest. This is determined
analytically for the mechanical systems in Section 3.3 and numerically for
the multi-machine test systems of Section 2.3. The controllability in a
multi-machine case with a general network is visualized inspired by the
bending modes of flexible mechanical structures.

Actuator rating cannot be handled explicitly with linear methods, as
limitation is a nonlinear phenomenon. Although not treated here, nonlinear
control laws can partly be assessed with linear mode controllability
measures. The control signal is then represented by its fundamental, which
is the component that contributes to damping.
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3.1 Modelling the Controlled Load

Thermal loads have several properties that make them actuator candidates
in a damping system based on load control. They have a thermal inertia
that makes interruptions in the second scale uncritical. This also permits
temporary connection when the heater is off. The reactive power
consumption is very low, which makes switching on and off
uncomplicated. If the rating is sufficiently high also a small number of
controlled loads will have impact on power oscillations. Disconnecting one
or more large loads at brief power consumption peaks can also partly
replace expensive peak generation from for example gas turbines.

Switching a large load on and off periodically gives an active power
variation shaped like a squarewave. A Fourier series expansion of a
squarewave between 0 and P yields an offset of 0.5P, a fundamental of
4P/π and harmonics. These components have different impact on the power
system. The offset is a change in the load flow corresponding to half the
load. The fundamental agrees in frequency with the sinusoidal motions of
the power oscillations and is the main control action. The harmonics
together form an impulse like waveform, with less obvious effects.

As offset and harmonics do not contribute to damping, they can be omitted
in the damping analysis. The effect of the fundamental can be analysed
using linear models with continuously variable active power as the control
variable. Although serving as a simplification here it is not unrealistic:
PWM control of the heating elements would offer true continuous variation
or several elements could be switched individually one at a time which
makes power changes quasi-continuous.

The results from studying active loads described as above are equally valid
for other components featuring freely controllable active power. Examples
of these are a self commutated HVDC link using PWM and a SMES
(Superconducting Magnetic Energy Storage) with a self commutated power
electronic network interface.

So-called braking resistors have been used to cope with large disturbances.
Such resistors are dimensioned so that they temporarily can absorb the
active power from a large power plant, which leads to ratings of up to 1400
MW [Shelton et al 1975]. Braking resistors were previously mechanically
controlled and aimed at improving transient stability [Stanton and Dykas
1989]. The introduction of thyristor control make the resistors suitable for
damping of oscillations [Larsen and Hill 1993] and is a possible
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implementation of the control laws that will be suggested in the following
chapters.

The validity of the results are however limited if a substantial reactive
power consumption is associated with the active power control action. This
is the case for distribution loads that are fed through transformers, cables or
lines with considerable reactive losses. Although not carried out here, the
influence of the reactive power component can be investigated using the
same methodology as for pure active power.

3.2 Computing Mode Controllability

Mode controllability is based on eigenvectors that may be arbitrarily
scaled. Comparisons between different modes (eigenvectors) can therefore
not be done. Comparing the mode controllability of two variables that do
not describe the same physical quantity is difficult for the same reason.
Only variables that represent the same physical quantity and are equally
scaled can be compared. The mode controllability of these variables then
gives a relative measure of their impact on a certain mode.
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Fig. 3.1 Illustration of the dependencies between inputs u, outputs y, modes z,
dynamic states xd, algebraic variables xa and algebraic equations ea, in a
matrix DAE model.



50 3. Control Signals

The expressions for mode controllability of a linear DAE matrix model,
differ depending on if the actuator is already introduced as an input
variable or not. The differences are illustrated by Fig. 2.3 which therefore
is repeated here as Fig. 3.1. It indicates that the input vector u influences
the mode vector z through the matrix,

Ψ B1 − A 12A 22
−1B 2( ) (3.1)

In other words, the strength in the coupling from input j to mode i is given
by element (i,j) of the matrix in (3.1) where the part within parentheses
equals Bode. The mode controllability of an input is thus the same
regardless of if the system is formulated as an ODE or as a DAE model.

The algebraic variables and equations are introduced as they simplify the
formulation of the model. Although they are not explicit inputs, it is
possible to check their mode controllability. The modal controllability of
the algebraic variables is given by,

−ΨA12 (3.2)

This expression is, however, of little use as only independent algebraic
variables can be considered as input candidates. An alternative is to
introduce an input as a term in one of the algebraic balance equations, that
sum up to ea, which is zero. The modal controllability of ea is,

−ΨA12A 22
−1 (3.3)

which equals (2.15) that expresses the algebraic part of the left DAE
eigenvector. It quantifies how the balance equation and consequently the
new input affect the modes in z. The balance equation itself is not altered
by the new input, if the control action at steady state is zero. Note that ea
and xa in general represent different entities such as current and voltage.

Finding suitable locations for controlled active loads, in practice means
determining the mode controllability of active power at all candidate load
buses. An accurate and straightforward way to do this is to extend the
model with active power injectors at the buses in question. This produces
an input matrix, that together with the left ODE eigenvectors yields the
mode controllability as in (3.1).

When using EUROSTAG as modelling tool, adding injectors at all buses
increases the number of network components substantially. This makes the
model more difficult to overview. An alternative is to generate the input
matrices directly for the mode controllability study. Modulation of active
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power at a load bus does not affect the machine dynamics directly, so B1 in
(3.1) is zero. Instead it affects the algebraic equation variables ea via the
matrix B2. More specifically, the complex power ∆P+j∆Q gives rise to a
complex current injection ∆iR+j∆iI,
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where vR+jvI is the bus voltage with magnitude V.

If the system is lightly loaded, all angles are small and the voltage V is
close to its nominal value of one. This makes vI small and vR close to one,
so that B2injection is trivial with elements approximately equal to zero or
one. Assuming that the injected reactive power ∆Q  is zero, the mode
controllability of the injected active power ∆P then approximately equals
that of ∆iR, which simplifies (3.1) into (3.3). Simply extracting the ∆iR
elements from the algebraic part of the left eigenvectors of the original
DAE system model, in this case yields the mode controllability of injected
active power.

If the loading situation of the system does not permit vI to be neglected,
(3.4) must be carried out using the actual values of vR, vI and V from the
load flow calculation. The advantage of this method over adding explicit
inputs to the model is then less obvious as in the case when vI could be
ignored.

An eigenvector element is in general complex valued with a nonzero
argument. It is very important not to confuse this argument with that of a
complex voltage or current, which is a phase angle related to the line
frequency. The argument of an eigenvector element indicates what phase
the motion of the element has during a sinusoidal mode swing, whose
frequency and damping are given by the real and imaginary parts of the
corresponding eigenvalue (see Section 2.2). When the arguments of
eigenvector elements that are compared differ by approximately 180°, the
terms in phase and anti-phase can be used to describe the situation. An
angle reference is then assigned and its angle is added to the arguments of
all eigenvector elements. These are then approximately real, and their
argument can then be replaced by the sign of the real part.

Equation (3.4) shows that the load flow situation affects the mode
controllability of active and reactive power. The measures of controllability
arrived at through eigenvector calculations are therefore strictly valid only
at the linearization point. It seems, however that changing the point of
operation qualitatively leaves the active power controllability of electro-
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mechanical modes unaffected. Only small quantitative changes appear.
Reactive power modulation on the other hand, has an influence on electro-
mechanical modes, that is highly sensitive to changes in load flow, such as
shifting the power flow direction [Samuelsson et al 1995]. This is a general
observation in literature on the use of FACTS and PSS to increase power
system damping. One explanation is that reactive power affects the electro-
mechanical dynamics more indirectly than active power, which makes the
dependence on other factors stronger.

3.3 Controllability of Test Systems

The active power mode controllability will now be investigated for each of
the test systems. The modes and operating points will be those mentioned
in Sections 2.3 and 2.4. The mechanical systems are treated analytically,
while only numerical results are presented for the multi mode systems.

Spring-Mass Inter-Area Mode System

Controlled active power is represented by the force F3 in the DAE model
(2.29). The algebraic equation is a force balance at the coordinate x3. The
controllability of F3 on the swing mode can therefore be obtained from the
algebraic part of the left DAE eigenvectors representing the variables ea of
Fig. 3.1. By using (3.3) this can be computed from the left ODE
eigenvectors in (2.31) as,

−Ψ1A12A 22
−1 =

= κ 1

λ1

−1

λ1
1 −1











k1

M1

k2

M2
0 0











T
1

k1 + k2

=

k1

M1
− k2

M2

λ1 k1 + k2( ) κ

(3.5)

The fact that shortening of a spring increases its stiffness k, makes it
possible to interpret (3.5) in terms of distances. F3 thus has the strongest
impact in the immediate vicinity of the masses, and is greatest at the lighter
one. The influence on the mode is positive or negative depending on which
mass is closest. This is very natural as the masses swing against each other.
Equation (3.5) also indicates that the force will have no effect on the mode
at a position for which,

k1

M1
= k2

M2
(3.6)
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If the ratio between the two masses is great, (3.6) indicates that the point
where controllability is lost, will be located close to the heavier mass.

Single Mode Systems

The spring-mass local mode model and the pendulum are closely related to
the spring-mass inter-area mode model. The mode controllability of the
force input can in both cases be obtained by applying (3.3). For each of the
spring-mass model eigenvalues this gives,
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while the expression for the pendulum is,
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Equation (3.7) is easier to interpret than the previous expression as it uses
the explicit line lengths. The results agree with the rule above that
controllability increases as the point of attack is moved closer to the
swinging mass. As the reference behaves like an infinite mass, the
controllability is zero there.

A comparison between (2.22) and (2.29) shows that for power system
models, the spring coefficients are replaced by synchronizing coefficients
defined as in (2.23). Assuming that the angle and voltage differences
between neighbouring buses are small, these factors of the synchronizing
coefficients may be omitted leaving only the admittances Yij. The
impedance of a line is sometimes called electrical distance as it is
proportional to the length of the line. The synchronizing coefficients thus
have the same inverse relation to distance as the spring coefficients.

The point of zero mode controllability in the spring-mass inter-area mode
system is characterized by (3.6). Similarly, in the power system
counterpart, the mode controllability of active power is lost when the mass-
scaled electrical distance is the same to both machines, as shown in [Smed
and Andersson 1993]. This point is expected to be situated close to the
larger machine if they are of different size.
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Three Machine System

The three machine system is too complex to be handled analytically.
Instead the left eigenvectors of the DAE model obtained from the
simulation program EUROSTAG (see Fig. 2.1) are computed numerically
in Matlab. As the angles are small and the bus voltages deviate very little
from one, the real current eigenvector elements immediately yield active
power controllability. Fig. 3.2 shows the complex eigenvector elements
representing ∆iR at all nine buses for both the 1.3 and the 1.8 Hz modes.
The same information for the load buses is given numerically in Table 3.1.

Bus 1.3 Hz mode 1.8 Hz mode

N5 0.269e-j83° 0.098ej34°

N6 0.228e-j83° 0.297ej28°

N8 0.593e-j86° 0.282ej29°

Table 3.1 Active power controllability at the load buses obtained as the left DAE
eigenvector elements representing real current injection.
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Fig. 3.2 Complex eigenvector elements representing real current injection at all nine
network buses for the 1.3 Hz mode (left) and the 1.8 Hz mode (right).
Dashed line shows mean argument of rotor angular velocity elements.

In (2.18) active power enters the equation for (time derivative of) the rotor
angular velocity. In the left eigenvectors, active power injection is therefore
expected to have arguments that are similar to those of the rotor angular
velocity elements. An angle reference is therefore obtained by fitting a
straight line to the ∆ω elements of the left eigenvectors. While the dashed
line in Fig. 3.2 indicates the angle reference, the ∆ω elements themselves
are not shown. If the eigenvector elements are close to the dashed line, a
projection on to the line describes the situation well. In this case the
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controllability information of the ∆iR elements is reduced into signed real
numbers.

A bending mode of a flexible mechanical structure is conveniently
visualized as a snapshot of the motion when the coordinates take one of
their extreme values. This is used to illustrate the pendulum in Fig. 2.12
and other examples can be found in textbooks (see for example p. 199 in
[Timoshenko 1937]). The same technique can be employed to visualize
mode controllability in a power system. Let the mode controllability at
each bus be represented by a vertical bar. The bars point upward or
downward depending on the sign of the controllability and have heights
proportional to the magnitude. Place the bars on a 3D view of the network
topology as in Fig. 3.3. The dashed lines connecting the bars are added for
improved readability. The line sections where the controllability changes
sign and thus passes through zero are easily identified. Furthermore,
regions are formed within which the controllability has the same sign.
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Fig. 3.3 Active power controllability at all network buses for the 1.3 Hz mode (left)
and the 1.8 Hz mode (right).

The visual impression of a 3D graph is improved considerably by using
color computer graphics and by interactively manipulating the orientation
of the graphical object.

As predicted by the mechanical model, the controllability is highest close
to the smaller machines that are active in the mode: S2 and S3 for the 1.3
Hz mode and S3 for the 1.8 Hz mode.

The controllability is zero close to the very large machine H1 for both
modes. For the slow mode, H1 swings against the other two, while for the
faster mode it is more like a fixed reference bus. When the two smaller
machines swing against each other in the faster mode, a point of zero
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controllability also occurs close to S2, which is considerably larger than
S3.

As mentioned, the points of zero controllability are located where the mass-
scaled electric distances to the machines swinging in each direction are
equal. While being fairly simple to determine this quantity for a two
machine system, it is very complicated for a multi-machine power system
with a meshed network. The controllability information obtained from the
DAE eigenvectors is more general than the mass-scaled electric distance.
As it can include the actual voltage profile and the true angle differences it
is more valid. In combination with the visualization technique used in Fig.
3.3 it provides a valuable tool for understanding of the variation of the
mode controllability in the network.

Twenty-three Machine System

The controller design for the twenty-three machine system focuses on the
damping of three selected electro-mechanical modes. As for the three
machine system, eigenvectors are computed numerically using the linear
DAE model exported from EUROSTAG. The large angular separation at
the operating point of the fault case, however requires (3.4) to be used. The
resulting active power controllability at the load buses is given in Table 3.2
and the distribution in the complex plane of the values for all network
buses is shown in Fig. 3.4. Again a line (dashed) is determined from the
rotor angular velocity elements of the eigenvectors. As the points lie fairly
close to the line a projection onto the line describes the situation well.
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Fig. 3.4 Distribution of active power controllability at all network buses in the
complex plane. Dashed line shows mean argument of rotor angular velocity
elements.
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Bus Mode 1 Mode 2 Mode 3

N1011 0.263e-j69° 0.007e-j67° 0.004e-j130°

N1012 0.285e-j68° 0.008e-j71° 0.006e-j171°

N1013 0.303e-j68° 0.009e-j70° 0.006e-j165°

N1022 0.161e-j68° 0.017ej96° 0.045e-j42°

N1041 0.132ej100° 0.080e-j65° 0.021e-j54°

N1042 0.229ej104° 0.114e-j52° 0.171e-j42°

N1043 0.141ej103° 0.062e-j60° 0.045e-j47°

N1044 0.109ej106° 0.020e-j28° 0.079e-j43°

N1045 0.247ej100° 0.140e-j64° 0.026e-j45°

N2031 0.014e-j44° 0.035ej96° 0.081e-j41°

N2032 0.059e-j58° 0.058ej99° 0.123e-j39°

N4071 0.374e-j71° 0.045e-j80° 0.086ej144°

N4072 0.436e-j72° 0.067e-j81° 0.136ej143°

N41 0.109ej106° 0.033ej101° 0.042e-j42°

N42 0.076ej106° 0.015ej31° 0.100e-j42°

N43 0.090ej106° 0.015ej4° 0.092e-j43°

N46 0.089ej106° 0.015ej5° 0.097e-j43°

N47 0.096ej105° 0.021ej32° 0.145e-j42°

N51 0.318ej101° 0.224e-j64° 0.044e-j43°

N61 0.254ej105° 0.101ej116° 0.053ej133°

N62 0.354ej105° 0.162ej118° 0.103ej134°

N63 0.381ej106° 0.228ej119° 0.142ej135°

Table 3.2 Active power controllability at the load buses.

The geographical variation of the active power controllability throughout
the network is visualized in Fig 3.5 using the same method as above. The
bus names have been removed to improve readability, but are found in Fig.
2.8.

The controllability is high for all three modes in the southeastern part and
in the areas Southwest and External. The northern part of the system
exhibits high controllability for Mode 1, while in the mid eastern part it is
high only for Mode 3. With the exception of A4051 in Mode 3, the
controllability at the machine buses agrees well with the swing pattern of
the machines shown in Fig. 2.9.
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Fig. 3.5 Active power controllability at all network buses for Mode 1,2 and 3.


