
8
Using a Second Linear Damper

… in which a second damper is introduced in the test systems and it is
shown that a damper using local bus frequency can be tuned using the
concept of impedance matching.

The incentive for using a second damper is that two dampers will yield
more damping than one. It is expected that they can provide damping of a
greater number of modes together, particularly if the dampers are far apart
and are aimed at modes associated with widely different parts of the
system. But if the second damper instead is placed close to the first one,
they are likely to interact in the damping of the same modes. The
characteristics of this interaction is less obvious. In this chapter, both types
of locations will be studied.

In Section 8.1 a second damper is introduced in the spring-mass inter-area
mode equivalent. Some generic cases for both local bus frequency and
closest machine frequency feedback are given and are studied numerically.
A useful finding is that tuning a damper using local bus frequency for
maximum damping of a mode, is equivalent to impedance matching. This
is shown through a comparison with an electric circuit, and can be used to
explain the behaviour observed for the power systems in Section 8.3. But
first Section 8.2 discusses possible dependencies between modes and
dampers in larger systems. They motivate the use of routines that optimize
an objective function but this hides the dependencies between specific
modes and gains. As understanding is more important than optimality here,
other methods are chosen: for the three machine system the modes are
studied separately when varying the two gains. For the twenty-three
machine system all eigenvalues are followed but only one gain is varied at
a time. Section 8.3 thus explores the impact of two dampers on the three
machine system. This gives valuable information on damper interaction in
a meshed network, which makes it possible to interpret the results for the
twenty-three machine system in Section 8.4. After studying two dampers
that both aim at Modes 1 and 2, one of them is replaced by a damper that
instead improves the damping of Mode 3. The conclusions of the chapter
are given in Section 8.5.
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8.1 Spring-Mass Inter-Area Mode System

The use of two dampers requires two control inputs at separate locations in
the network. In the spring-mass model of Fig. 8.1 this corresponds to the
force inputs F3 and F4.
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Fig. 8.1 Spring-mass inter-area mode system with force inputs.

In the following it is convenient to view the three springs as parts of one
spring with spring coefficient k. First assume that F3 and F4 are zero. By
letting the spatial coordinates a and b specify the points x3 and x4 relative
to the distance from x1 to x2 respectively, the joint spring is divided into
three parts being a, b-a and 1-b of the full length:
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It is easy to show that the three springs coupled together yield a spring with
the spring coefficient k,
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Changing a and b to relocate the forces F3 and F4 will not alter the
resonance frequency,
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(8.1)

which can  be compared to (2.30). Whereas eigenvalues and zeroes of the
uncontrolled system could be determined analytically, the behaviour for
finite gains require numeric treatment. This is done below for feedback
from local bus frequency and from the frequency of the closest machine.
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The candidate location with the highest mode controllability is chosen for
the first damper. The mode controllability of the second damper is
consequently lower.

Local Bus Frequency

As shown in Section 4.3 feedback from local bus frequency to active power
is equivalent to a viscous damper in the spring-mass model. Two dampers
thus give the system in Fig. 8.2.
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Fig. 8.2 Spring-mass inter-area mode system with two dampers.

F1 and F2 are omitted as they are constant and will not affect the dynamics.
To demonstrate the relationship between damping and the parameters,
some numerical values are chosen: M1, M2 and k are 1 kg, 4 kg and 5 N/m
respectively, giving a resonance frequency of 2.5 rad/s. The location a of
the first damper is set to 0.4. This gives a root locus for a varying d3 and
zero d4 similar to the right graph of Fig. 7.2. This behaviour is also
representative of Figs 7.6, 7.8 and 7.9.

The mode controllability of the first and second dampers at the locations a
and b are obtained by entering the appropriate spring coefficients into (3.5),
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The value a=0.4 gives a mode controllability of 0.5 κ/λ1. Two locations of
the second damper are used; b=0.5 and b=0.99. The mode controllability is
then 0.375 κ/λ1 and -0.2375 κ/λ1 respectively.

The root locus method is not applicable as the dependence on two
parameters is to be studied. Instead the real part of inter-area mode
eigenvalues is plotted as a function of the two gains as in Fig. 8.3.
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Fig. 8.3 Real part of the inter-area mode eigenvalues as the gains are varied between
0 and 10. The parameter a is 0.4, while b takes the values 0.5 (left) and 0.99
(right). '*' indicates the point of maximum damping.

At low gains, both dampers contribute to damping and as expected the first
damper is more effective than the second. The maximum damping with
both dampers in operation is only slightly better than that of the first
damper alone.

This behaviour can be understood by introducing an electric equivalent
based on the analogies in Table 8.1 from [Peterson 1996].

Electrical System Mechanical System

Voltage u Velocity v

Current i Force F

Capacitor C Mass M

Inductance L=1/k Spring coefficient k

Conductance G Viscous damping d

Table 8.1 Equivalent variables and parameters in mechanical and electrical systems.

Application of the analogies to the equations governing the system in Fig.
8.2 gives a state space description that agrees with the circuit of Fig. 8 .4.
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Fig. 8.4 Electric equivalent to the spring-mass inter-area mode system with two
dampers.
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The conductances G3 and G4 represent the dampers. If these parameters are
zero, the electric system is a pure LC-circuit. It exhibits an undamped
oscillatory mode with the frequency,
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1
C1

+ 1
C2







which is equivalent to the expression (8.1). Setting G3 to infinity yields two
LC-circuits with different resonance frequencies. This corresponds to the
mechanical system zeroes in Fig. 7.1. The dynamic behaviour of the
electric circuit thus agrees with that of the mechanical system.

For this circuit active and reactive power are well-defined: active power is
dissipated in the conductances, while reactive power quantifies the energy
oscillating between the lossless inductors and capacitors. Consequently the
oscillation is damped as its energy is dissipated as active power. This view
of oscillations and damping is also discussed for vibration damping
[Ekdahl 1996].

If only the damper G3 is considered, maximum damping is equal to
maximizing the active power P3 dissipated in the damper. This agrees with
previous experience as zero and infinite G3 both yield zero damping since
in the first case the current is zero, while in the second case the voltage is
zero. By modelling the circuit as G3 connected to a two-pole with
impedance Z, the condition for maximum P3 is conveniently formulated as
that of impedance matching,

1
G3

= Z (8.2)

If G3 is matched to the rest of the circuit and L3 is zero, it is obvious that
introducing G4 will decrease damping. If L3 is greater than zero G4 will
disturb G3 less and some active power can be dissipated in G4. This agrees
well with the results for the spring-mass system in Fig. 8.3. In this case the
mode controllability of the second damper is lower. The limited
improvement due to the second damper is therefore expected. It is obvious
that the concept of impedance matching is relevant for qualitative analysis.

Direct use of (8.2) is more complicated as the impedances of capacitances
and inductances involve a frequency. An iterative procedure is required as
the frequency is obtained from the eigenvalues which are affected by the
conductance, that was to be determined. The pseudo code below suggests
one solution:
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G=G0
while |∆G|>ε

ω = mode frequency for the current value of G
∆G=G-1/|Z(ω)|
G=G+α∆G

end

The routine was applied to the selection of G3 in Fig. 8.4 with G4=0. The
system parameters were chosen so that this is equivalent to the selection of
d3 in Fig. 8.2 with d4=0. Using the imaginary part of the inter-area mode
eigenvalue as ω and letting 10-3<G0<40, α=0.1, ε=10-4, the procedure
converges to G3=6.75 with the eigenvalues -0.738±j2.985. If instead ω is
taken as the absolute value of the inter-area mode eigenvalue the gain
G3=6.09 gives the eigenvalues -0.738±j2.861. Looking closer at Fig. 8.3
for d4=0, the gain 6.4 yields the best damping by placing the eigenvalues at
-0.743±j2.922. Despite the numerical discrepancy, the concept of
impedance matching is valuable as it provides a condition for maximum
damping that has a physical interpretation.

Measured Closest Machine Frequency

The equivalent to machine frequency in Fig. 8.1 is velocity of the masses.
In order to determine which mass is the closest to the damper location, the
point of zero mode controllability needs to be known. Using the same
values of M1, M2 and k as above it occurs if either a or b is set to 0.8. The
first damper is located at a=0.4 and F3 is thus controlled in proportion to v1
with the gain d3. For the values 0.5 and 0.99 of b, the proper feedback
signals are v1 and v2 respectively. The gain of the second damper is d4 and
its output is F4. Varying the two gains independently and plotting the real
part of the inter-area mode eigenvalues gives Fig. 8.5.
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Fig. 8.5 Real part of the inter-area mode eigenvalues as the gains are varied between
0 and 10. The parameter a is 0.4, while b takes the values 0.5 (left) and 0.99
(right). '*' indicates the point of maximum damping.
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The results for the two values of b differ substantially. When both dampers
are associated with the same machine and the first damper is tuned for
maximum damping, the second damper can not add any damping. If the
dampers instead are associated with different machines their joint operation
yields very high damping.

The structural properties of the zeroes described in Section 7.1 may explain
the effect of the second damper. An infinite d3 brings the inter-area mode
eigenvalues to the zeroes, that according to [Miu 1991] can be obtained by
fixing the actuator and the sensor. This gives constant values of both x1 and
x3 and moves the swing node to x3. A finite d3 will not fix x1 and x3, but
reduce the magnitude of their excursions. In both cases the first damper
alone can damp the motions of M1. Whereas the most active mass is M1 in
the uncontrolled system, it is M2 once M1 is damped.

Placing the second damper at b=0.5 with feedback from v1 leads to a
situation much like for the local bus frequency case, where the second
damper disturbs the first damper rather than supports it.

If instead the second damper is located at b=0.99 with feedback from v2, it
acts to damp M2. With one damper at each mass Fig. 8.5 indicates that
there is no limit for the real part of the inter-area mode eigenvalues.

8.2 Interaction and Selection of Gains

By considering the geographical extent of the electro-mechanical modes,
they can be categorized as more or less local. The fact that local modes in
different parts of the system are unlikely to interact offers a certain amount
of decoupling. Similarly, most damper locations will affect only a few
modes. This was shown in Chapter 7, where only Modes 1 and 2 were
influenced by the suggested dampers. Selection of gains in many dampers
that affect many modes can therefore often be divided into a number of
independent subproblems that involve fewer dampers and modes. When all
the possibilities of decoupling have been exhausted, the problems cannot
be further simplified and their complexity can then be categorized
according to Table 8.1.

One mode Many modes

One damper Case 1 Case 2

Many dampers Case 3 Case 4

Table 8.2 Dependencies between modes and dampers leading to four cases.
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If each damper influences only one mode and each mode is affected by
only one damper (Case 1), the selection of each gain can be treated
separately. The root locus method is well suited for the selection of one
parameter as shown in Chapter 7. There it was evident that several modes
could be affected by one gain (Case 2), and that they reached maximum
damping at different values of this gain.

The influence on many modes calls for a measure of their joint
performance, known as an objective function. Having defined an
appropriate objective function, the gain selection problem may be
submitted to an optimization routine. One example of an objective function
is the real part of the least damped eigenvalue. Another example is to use
the sum (of the real parts) of the eigenvalues computed as the trace of the
system matrix [Eliasson and Hill 1992]. The success of an optimization
routine depends critically on the choice of the objective function.

Coordinated selection of several gains (Cases 3 and 4) is considerably more
complicated than selecting a single gain. This is particularly true for Case
4. As mentioned above an optimization routine can search the parameter
space for a set of gains that optimizes the objective function. An alternative
is the method based on discretization of a part of the parameter space that
was used above. This may be applied to each mode of a larger system,
provided the modes are sufficiently few and can be kept apart. Since this is
the case for the three machine system the influence of two dampers will be
studied using this method. If the number of modes is large or if they cannot
be separated they are replaced by an objective function, which however
hides the individual modes. For larger systems such as the twenty-three
machine system, neither of these methods therefore contributes much to the
understanding of the dependencies between modes and gains.

A preferred alternative is to select the gains one at a time using root locus
plots. This gives a good insight in system behaviour, which is given
priority here. A drawback of sequential optimization or uncoordinated gain
selection is that the final set of selected gains is very unlikely to be optimal.
Fig. 8.3 on the other hand shows two minima on each side of a saddle
point. This indicates that also coordinated gain selection by unconstrained
optimization may have problems minimizing the real part of the mode.

8.3 Three Machine System

In Chapter 7 bus N8 was chosen as the location of the first damper as it
offered superior mode controllability of the 1.3 Hz mode according to
Table 3.1. The mode controllability of the 1.8 Hz mode at bus N8 was
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exceeded only by bus N6, which therefore is the natural location for the
second damper.

Local Bus Frequency

The eigenvalue sensitivities at zero gain in Table 7.1 indicate that active
power controlled by the local bus frequencies both at N6 and N8 initially
increase the damping of the two modes. Damping for nonzero gains is
shown in Fig. 8.6. It shows for each mode the real part of the electro-
mechanical eigenvalue as a function of the two damper gains d6 and d8.
Note that the dependence on the gain d8 for d6=0 is illustrated more in
detail in Fig. 7.6.
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Fig. 8.6 Real parts of the 1.3 Hz mode (left) and the 1.8 Hz mode (right) for different
gains of the dampers at bus N6 and N8 using feedback from local bus
frequency.

The damping of both modes increases with the gains as long as they are
small, but for sufficiently large gains damping decreases again. The joint
operation of the dampers has different influence on the two modes. Starting
out from optimum damping of the 1.3 Hz mode due to the damper at N8,
the damper at N6 cannot offer much improvement. This behaviour is close
to that of the spring-mass system with b=0.5 analyzed above.

Damping of the 1.8 Hz mode more symmetrically depends on the gains of
both dampers. This is different from the spring-mass case, but the inter-
area mode model is one-dimensional. The meshed nature of the three
machine system is thus qualitatively different and cannot be explained by
the simple spring-mass model. By assigning a direction to the modes the
damper locations can be related to this direction. Upwards in Fig. 2.5 is
now defined as North. Using Fig. 4.3 the direction of the 1.3 Hz mode is
North-South, while that of the 1.8 Hz mode is Northeast-Southwest. It can
now be concluded that the influence of two dampers along the swing
direction can be described by the spring-mass model. Two dampers that are
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not electrically close to each other and are located side by side in the swing
direction cannot be incorporated in the spring-mass model of Fig. 8.1.
From Fig. 8.6 it is evident that these two dampers together yield more
damping than any of them on its own.

Fig. 7.6 also shows eigenvalues of a third complex mode moving towards
the imaginary axis. For high gains, the eigenvalues of this mode may have
the smallest real part. When selecting the gains, it therefore seems
reasonable to use the real part of the least damped mode as an objective
function that should be minimized. The variation of this quantity as a
function of the gains d6 and d8 is illustrated in Fig. 8.7.
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Fig. 8.7 Real part of the least damped oscillatory mode for different gains of the
dampers at bus N6 and N8 using feedback from local bus frequency. The
point of maximum damping is indicated by '*'.

For small values of the gains, the 1.3 Hz mode is the least damped.
Somewhat larger gains make the 1.8 Hz mode the least damped, while for
large gains it is the third mode. The objective function has its minimum at
d6=0.73 and d8=1.25 p.u./(rad/s) which gives the complex eigenvalues
-1.3±j11.7, -1.4±j9.6 and -1.3±j5.8.

Measured Closest Machine Frequency

According to the methods in Section 4.4 for finding the closest machine,
S3 is closest to bus N6. Fig. 3.3 leaves little doubt about this, but to be
certain Table 8.3 may also be consulted. It contains the eigenvalue
sensitivity of the electro-mechanical eigenvalues to feedback from machine
frequency to active power at N6. Table 8.3 verifies that feedback from the
machine S3 is the only alternative with appropriate argument for both
modes.
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Machine 1.3 Hz mode 1.8 Hz mode

H1 0.509ej5° 0.098ej12°

S2 1.504e-j172° 0.966e-j4°

S3 0.909e-j170° 3.245e-j176°

Table 8.3 Eigenvalue sensitivity of the electro-mechanical eigenvalues in the second
quadrant to feedback from machine frequency to active power at bus N6.

Fig. 8.8 illustrates how the damping of the modes depend on the gains d6
and d8 of the dampers located at bus N6 and N8.
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Fig. 8.8 Real parts of the 1.3 Hz mode (left) and the 1.8 Hz mode (right) for different
gains of the dampers at bus N6 and N8 using feedback from the frequency
of S3. The point of maximum damping is indicated by '*'.

Just like for the spring-mass model with b=0.5, one measurement signal
here controls two actuators. It is therefore natural that the results are very
similar to those in Fig. 8.5 for b=0.5: provided the damper at the location
with the highest mode controllability is tuned for maximum damping, the
other damper can only reduce damping. Letting one gain be zero, damping
depends on the other gain much like in the bus frequency case. It indicates
that although not directly applicable, impedance matching may be relevant
for feedback from machine frequency. This is natural as good damping also
in this case is a balance between the magnitude of the actuator output and
the feedback signal that are increased by high and low gains respectively.

Machine frequency as feedback signal does not give rise to a third complex
mode. Fig. 8.9 shows that for small and large gains the least damped mode
is the 1.3 Hz mode, while for intermediate gains it is the 1.8 Hz mode.
Selecting the gains by minimizing the real part the least damped mode
yields the point indicated by '*' in Fig. 8.9. It occurs at d6=0.88 pu/(rad/s)
and d8=0.08 pu/(rad/s) which gives the complex eigenvalues -1.8±j9.2 and
-1.8±j7.6.
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Fig. 8.9 Real part of the least damped oscillatory mode for different gains of the
dampers at bus N6 and N8 using feedback from the frequency of S3. The
point of maximum damping is indicated by '*'.

8.4 Twenty-three Machine System

The twenty-three machine system is sufficiently large to contain both inter-
area modes such as Mode 1 and more or less local electro-mechanical
modes. Most modes will involve only a part of the system and are
consequently affected only by dampers within the corresponding area. This
is the case for Modes 2 and 3. The fact that Modes 1 and 2 are affected by
dampers both at bus N51 and at bus N63, raises the question of controller
interaction. This is studied here by departing from the cases in Section 7.4
with one damper and adding a damper at the other location. The influence
of the new damper can then be studied in a root locus plot. Together with
Section 7.4, this gives information about system behaviour along four lines
in the two-dimensional parameter space spanned by the two gains as
illustrated in Fig. 8.10. Results for the lines on the axes are presented in
Section 7.4, while the other two are explored below.

d51

d63

d51opt

d63opt

Fig. 8.10 Explored parts of the parameter space spanned by the gains d51 and d63 of
the dampers at bus N51 and bus N63. d51opt and d63opt are the optimum
gains selected in Section 7.4.
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As the first damper modifies system dynamics, sensitivities based on the
measures of mode observability and mode controllability in Chapters 3 and
4 are no longer valid. Therefore new sensitivities are computed for the
cases with one damper at optimum gain.

A single damper at bus N51 or bus N63 gives sufficient damping to Modes
1 and 2, but Mode 3 is hardly affected by dampers at these locations. A
second damper is therefore introduced at a new location in order to increase
the damping of Mode 3.

Local Bus Frequency

The root locus plots of Figs 7.8 and 7.9 indicated that suitable gains for
active power controlled by local bus frequency at bus N51 and N63, are 2.8
and 4 p.u./(rad/s) respectively. These gains bring Mode 1 to its point of
maximum damping, while Mode 2 could be even better damped by higher
gains.

Assuming that the damper at bus N51 has its gain d51 set to 2.8 p.u./(rad/s),
the eigenvalue sensitivity to feedback gains at this point is of interest. In
Table 8.4 values are given for the buses N51 and N63, but also for N1042
and N47 where the sensitivity of Mode 3 is highest.

Bus Mode 1 Mode 2 Mode 3

N1042 0.114ej161° 0.078e-j69° 0.140e-j172°

N47 0.036e-j157° 0.009ej62° 0.115e-j172°

N51 0.251ej77° 0.537ej176° 0.002ej158°

N63 0.321e-j160° 0.080ej52° 0.055ej178°

Table 8.4 Sensitivities of the selected eigenvalues in the second quadrant to local
feedback from bus frequency to active power when d51 is 2.8 p.u./(rad/s).

According to Fig. 7.8, an increase in d51 moves the eigenvalue in the
second quadrant of Mode 1 upwards, while those of Modes 2 and 3 are
further damped. This agrees well with Table 8.4, which also states that the
damper at N63 initially will improve the damping to Modes 1 and 3, while
actually decreasing that of Mode 2. This is verified by Fig. 8.11 which
shows the root locus for a variation in d63 when d51 is 2.8 p.u./(rad/s).
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Fig. 8.11 Root locus for the gain d63 that relates active power injection at bus N63
with local bus frequency. Eigenvalue locations for the values zero (+), 4.6
(x) and infinity (o) of d63 are indicated while d51 constantly is 2.8
p.u./(rad/s). The right graphs shows details of the left plot.

Before interpreting Fig. 8.11, the fourth line of Fig. 8.10 is explored by
setting d63 to its optimum value of 4 p.u./(rad/s) while d51 temporarily is
zero. This gives the eigenvalue sensitivities to feedback from local bus
frequency to active power injection. Table 8.5 contains the values both for
the buses N51, N63 and N1042 as well as for N47 where the sensitivity of
Mode 3 is high.

Bus Mode 1 Mode 2 Mode 3

N1042 0.218e-j132° 0.139ej109° 0.058e-j142°

N47 0.072e-j129° 0.058ej79° 0.119e-j163°

N51 0.407e-j144° 0.159ej108° 0.076ej150°

N63 0.413ej92° 0.346e-j172° 0.004e-j2°

Table 8.5 Sensitivities of the selected eigenvalues in the second quadrant to local
feedback from bus frequency to active power  when d63 is 4 p.u./(rad/s).

The sensitivities to a feedback gain at bus N63 agree well with the root
locus of Fig. 7.9. The same comparison but for bus N51 can be done with
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Fig. 8.12. It is the root locus obtained by varying d51 when d63 is 4
p.u./(rad/s).
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Fig. 8.12 Root locus for the gain d51 that relates active power injection at bus N51
with local bus frequency. Eigenvalue locations for the values zero (+), 3.6
(x) and infinity (o) of d51 are indicated while d63 constantly is 4 p.u./(rad/s).
The right graphs shows details of the left plot.

By combining the mode shapes in Fig. 2.9a with the swing patterns in Fig.
2.9b the geographical extent and direction of the modes can be
characterized. Mode 1 is a global North-South mode, while Mode 2 is a
more local mode where the machines at A4051 swing against those at
A4047 and A4063.

Relative to the swing direction of Mode 1, N51 and N63 are located side by
side just like the buses N6 and N8 for the 1.8 Hz mode of the three
machine system. By looking at Fig. 8.6 it is therefore expected that the
dampers at N51 and N63 together yield more damping than any of them
can provide on its own.

The locations of N51 and N63 relative to the swing direction of Mode 2 are
comparable to those of N6 and N8 for the 1.3 Hz mode of the three
machine system. Figs 8.6 and 7.8 show that in both cases (close to)
maximum damping is obtained by using only the damper at the superior
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location which here is N51. If the gain of this damper is less than required
for maximum damping, the other damper can improve damping as shown
both in Figs 8.6 and 8.11. The damper at N51 can also support the one at
N63, especially if the gain of the latter is not selected for maximum
damping of the mode.

The results in Section 7.4 for one damper alone are very good, and show
that one damper at bus N51 or N63 can add sufficient damping to Modes 1
and 2. Of the two alternatives, the damper at N63 with gain d63 set to 4
p.u./(rad/s) is chosen as it provides more damping of Mode 1. The
eigenvalue shifts that are achieved through joint operation of the two
dampers are unrealistically large. Instead of further damping Modes 1 and
2, a second damper is dedicated for damping of Mode 3.

Table 8.5 reveals that Mode 3 exhibits the greatest sensitivity to feedback
from local bus frequency to active power at bus N47. The root locus for
variations in the gain d47 is shown in Fig. 8.13.
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Fig. 8.13 Root locus for the gain d47 that relates active power injection at bus N47
with local bus frequency. Eigenvalue locations for the values zero (+), 2.8
(x) and infinity (o) of d47 are indicated while d63 constantly is 4 p.u./(rad/s).
The right graphs shows details of the left plot.
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It is evident that the damping of Modes 1 and 3 is improved by the new
damper, whereas that of Mode 2 is decreased. The value 2.8 p.u./(rad/s) of
d47 gives a reasonable compromise and is indicated in the plot.

Fig. 8.13 shows that the branches of Modes 2 and 3 start out as semi-
circles. Having come halfway after passing the suggested value of d47, they
however switch roles and follow each others' semi-circles towards the
zeroes. This strong interaction is probably due to similar mode shapes and
close eigenvalue locations as mentioned in connection with Fig. 7.12. The
individual dependence of Modes 2 and 3 on the gain d47 will not be
commented.

It is interesting to note that the poorly damped zeroes corresponding to a
rigid body mode are stable in Fig. 8.13 in contrast to those in Figs 7.8, 7.9,
8.11 and 8.12. Locating the dampers at the buses N47 and N63 better
reflects the extent of the rigid body mode and thereby seems to enable
damping of it.

Measured Closest Machine Frequency

According to Figs 7.12 and 7.13 active power injection at the buses N51 or
N63 controlled by the machine frequency of A4051_1 and A4063_1
respectively could provide good damping of Modes 1 and 2. Setting the
gain d51 of the damper at N51 to 2.4 p.u./(rad/s) gave maximum damping
of Mode 1, while Mode 2 could be further damped by a higher value. By
instead using the damper at N63 with its gain d63 set to 2.6 p.u./(rad/s) the
damping of Mode 2 was instead at its peak, while the damping of Mode 1
would benefit from a higher gain.

The same procedure as for feedback from local bus frequency will now be
followed to investigate the joint action of dampers both at bus N51 and bus
N63. With d51 at its optimum value, the eigenvalue sensitivity to active
power controlled by the frequency of the closest machine is calculated.
Table 8.6 contains values for the buses N51 and N63, but also for those
where the sensitivity of Mode 3 is highest which is N1042 and N47. At all
these buses it is simple to determine the closest machine, which are A4051,
A4063, A1042 and A4047. At plants with two units, number one is chosen.
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Bus Machine Mode 1 Mode 2 Mode 3

N1042 A1042 0.297e-j179° 0.245e-j6° 0.227e-j173°

N47 A4047_1 0.067e-j121° 0.057ej90° 0.182e-j175°

N51 A4051_1 0.945ej99° 1.179e-j108° 0.002ej170°

N63 A4063_1 0.773e-j128° 0.584ej75° 0.103ej177°

Table 8.6 Sensitivities of the selected eigenvalues in the second quadrant to active
power controlled by the frequency of the closest machine when d51 is 2.4
p.u./(rad/s).

The eigenvalue shift directions in Table 8.6 due to an increase of d51 agree
well with those in Fig. 7.12. The corresponding values for d63 are verified
by the root locus in Fig. 8.14, which is obtained by keeping d51 at 2.4
p.u./(rad/s) and varying d63.
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Fig. 8.14 Root locus for the gain d63 that relates active power injection at bus N63
with the frequency of the machine A4063_1. Eigenvalue locations for the
values zero (+), 5.6 (x) and infinity (o) of d63 are indicated while d51
constantly is 2.4 p.u./(rad/s). The right graphs shows details of the left plot.

If instead d63 is set to its optimum value of 2.6 p.u./(rad/s) and d51
temporarily is set to zero, the new eigenvalue sensitivities to active power
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controlled by the frequency of the closest machine result. The values for
the four buses N1042, N47, N51 and N63 are given in Table 8.7.

Bus Machine Mode 1 Mode 2 Mode 3

N1042 A1042 0.124e-j101° 0.201ej145° 0.110e-j153°

N47 A4047_1 0.033e-j82° 0.057ej110° 0.199e-j169°

N51 A4051_1 0.274e-j119° 0.349ej154° 0.095ej151°

N63 A4063_1 0.385ej179° 0.252e-j95° 0.005e-j10°

Table 8.7 Sensitivities of the selected eigenvalues in the second quadrant to active
power controlled by the frequency of the closest machine when d63 is 2.6
p.u./(rad/s).

Again the directions predicted for an increase of d63 agree with those seen
in Fig. 7.13. Keeping d63 at its optimum value and varying d51 yields the
root locus plot in Fig. 8.15.
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Fig. 8.15 Root locus for the gain d51 that relates active power injection at bus N51
with the frequency of the machine A4051_1. Eigenvalue locations are
indicated for the values zero (+), 4.3 (x) and infinity (o) of d51 while d63
constantly is 2.6 p.u./(rad/s). The right graphs shows details of the left plot.
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The plots in Figs 8.14 and 8.15 show that the use of two dampers can
approximately double the damping of Mode 2, while it has even more
effect on Mode 1. Whereas Fig. 7.13 also shows that Mode 1 can be fully
damped, Fig. 7.12 suggests that this applies to Mode 2 instead. This proves
the fact that in Fig. 7.12 these modes interact and have changed identities
for values of d51 greater than 2.4 p.u./(rad/s).

Since the dampers at the buses N51 and N63 are associated with different
machines, a comparison to the three machine system with two dampers is
not valid. The behaviour of Mode 1 is much the same in Figs 8.14 and 8.15
as in Figs 7.12 and 7.13. Dampers at the two locations together thus
influence Mode 1 in much the same way as they do on their own: the
eigenvalues of Mode 1 can be pushed all the way down to the real axis, but
at the same time other eigenvalues move towards a pair of unstable
complex zeroes.

Mode 2 mainly includes the machines A4047, A4051 and A4063. Placing
dampers close to two of these power plants is similar to using one damper
in the spring-mass inter-area mode system. Each of the two dampers at N51
and N63 can therefore add damping to the mode, but as the machines at
N4047 are free to move the total damping is limited.

Just like with feedback from local bus frequency, the use of a single
damper gives sufficient damping of Modes 1 and 2. The damper located at
bus N51 with feedback from the frequency at the machine A4051_1 is
chosen as it gives the best damping of the two modes. According to Table
8.6, Mode 3 is most sensitive to active power injection at bus N1042
controlled by the frequency of the local machine A1042. The root locus for
a variation of the gain d1042 is shown in Fig. 8.16
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Fig. 8.16 Root locus for the gain d1042 that relates active power injection at bus
N1042 with the frequency of the machine A1042. Eigenvalue locations are
indicated for the values zero (+), 0.36 (x) and infinity (o) of d1042 while d51
constantly is 2.4 p.u./(rad/s). The right graphs shows details of the left plot.

Varying d1042 has great effect on a mode at 5.4 rad/s. Its mode shape
shows machine A1042 swinging against the rest of the system, which
explains the great impact. Despite the superior sensitivity to d1042, Mode 3
is hardly affected at all. The damper location A1042 is therefore rejected.

The second highest sensitivity of Mode 3 in Table 8.6 is to the gain d47,
that relates active power injection at bus N47 to the frequency of the
machine A4047_1. Varying d47 when d51 is 2.4 p.u./(rad/s) gives the root
locus in Fig. 8.17.
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Fig. 8.17 Root locus for the gain d47 that relates active power injection at bus N47
with the frequency of the machine A4047_1. Eigenvalue locations are
indicated for the values zero (+), 2.6 (x) and infinity (o) of d47 while d51
constantly is 2.4 p.u./(rad/s). The right graphs shows details of the left plot.

This time the damping of Mode 3 is increased considerably. As Modes 1
and 2 are less affected, it is fairly easy to select a suitable value of d47,
which is 2.6 p.u./(rad/s). This gives all three study modes the same real part
-0.8, and actually improves damping of a faster 5.5 rad/s mode slightly.

8.5 Conclusions

The simple mechanical model again offers insight by providing
understanding that is consistent with the behaviour of the more complex
power systems. As predicted in the introduction to this chapter, a second
damper can have either positive or negative effect on the damping of a
certain mode.

For small gains, an increase in any gain will improve damping of the
electro-mechanical modes.

For larger gains, the situation is more complicated but two cases may be
distinguished. In the first case maximum damping of a mode is obtained by
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using only one damper, while in the second it requires the joint operation
of both dampers. The conditions can be summarized as below:

If the feedback signal is local bus frequency and the dampers are
located along the swing direction of the mode, the one with the highest
mode controllability alone gives the best damping. The same applies
for feedback from machine frequency if both dampers use the same
feedback signal.

When the dampers are placed side by side relative to the mode direction
and local bus frequency is used for feedback, maximum damping is
obtained by using both dampers. Similarly the use of two dampers can
be more efficient than one, if the frequencies of different machines are
used for feedback.

The negative influence on damping by a second damper can be explained
by the fact that tuning of the first damper is equivalent to impedance
matching provided the local feedback signal is employed. This is a
consequence of characterizing the oscillations as reactive power and the
damping effect as active power. Both these concepts are useful when
analyzing power system damping, and especially when using active power
as control signal.

The final damper locations in the twenty-three machine system for the bus
frequency and machine frequency feedback cases are close. The resulting
eigenvalue locations are also similar. This is natural since the points of
measurement in the two cases differ very little, as compared to the
distances involved.

The complex rigid body zeroes that were unstable in the single damper
case, are stable (Fig. 8.13) or only slightly unstable (Fig. 8.17) when
locating a damper at bus N47. Having dampers both here and at bus N51 or
N63 gives damping to a larger part of the machines and thus improves
damping even if one gain is infinite.

The eigenvalue sensitivity suggests that active power controlled by the
closest machine frequency yields greater leverage on Mode 3 at bus N1042
than at bus N47. By tracing out the root locus bus N47 is proved to be
superior. Together with the cases where modes with closely located
eigenvalues interact and change identities, this demonstrates the complex
nature of root locus branches. Studying the root locus plots, gives insight
into what is required from an optimization routine that is to perform
coordinated tuning of many dampers. Such knowledge may be useful when
formulating a suitable objective function.
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